>

rreeeere ‘m
/\ ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

GenOpt®)
Generic Optimization Program

User Manual
Version 2.0.0 3

Simulation Research Group
Building Technologies Department
Environmental Energy Technologies Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

http://SimulationResearch.1bl.gov

Michael Wetter
MWetter@Ibl.gov

June 23, 2003

Notice:

This work was supported by the U.S. Department of Energy (DOE), by the Swiss Academy
of Engineering Sciences (SATW), and by the Swiss National Energy Fund (NEFF).

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Contents

1 Abstract 5
2 Notation 6
3 Introduction 7
4 Optimization Problems 10
4.1 Classification of Optimization Problems 10
4.1.1 Problems with Continuous Variables 10

4.1.2 Problems with Discrete Variables 10

4.1.3 Problems with Continuous and Discrete Variables 11
4.1.4 Problems whose Cost Function is Evaluated by a

Building Simulation Program 11
4.2 Algorithm Selection 12
4.2.1 Problem P, withn>1 12
422 Problem Py withn>1 13
4.2.3 Problem P, withn=1 14
424 Problem Py withn=1............... 14
4.2.5 Problem Py 14
42.6 Problem P,yand Pegy o . oo 14
4.2.7 Functions with Several Local Minima 14
5 Algorithms for Multi-Dimensional Optimization 15
5.1 Generalized Pattern Search Methods (Analysis) 15
5.1.1 Assumptions 16
5.1.2 Geometric Aspects of the Algorithms 16
a) Generation of the Meshes 17
b) Global and Local Search Set 21
5.1.3 A Model Adaptive Precision GPS Algorithm . . . 22
5.1.4 Convergence Results 23
a) Unconstrained Minimization 23
b) Box-Constrained Minimization 25
5.2 Generalized Pattern Search Methods (Implementations) . 26
5.2.1 Coordinate Search Algorithm 27
a) Algorithm Parameters 27
b) Global Search 27
c) Local Search 27
d) Parameter Update 28
e) Keywords 28

Copyright (c) 1998-2003 1

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt
Generic Optimization Program
Version 2.0.0 ¢

Lawrence Berkeley National Laboratory
Building Technologies Department
Simulation Research Group

5.2.2 Hooke-Jeeves Algorithm 29
a) Algorithm Parameters 29
b) Map for Exploratory Moves 29
c) Global Search Set Map 29
d) Local Search Direction Map 30
e) Parameter Update 30
f) Keywords 30
5.3 Discrete Armijo Gradient 32
5.3.1 Keywords oL 34
5.4 Particle Swarm Optimization 36
5.4.1 PSO for Continuous Variables 36
a) Neighborhood Topology 37
b) Model PSO Algorithm 38
c) Particle Update Equation 39
(i) Version with Inertia Weight . . . 39
(ii) Version with Constriction Coef-
ficient 40
5.4.2 PSO for Discrete Variables 41
5.4.3 PSO for Continuous and Discrete Variables 42
544 PSOonaMesh. 42
5.4.5 Population Size and Number of Generations 43
546 Keywords oL 43
5.5 Hybrid Generalized Pattern Search Algorithm with Par-

ticle Swarm Optimization Algorithm 46
5.5.1 Hybrid Algorithm for Continuous Variables 46

5.5.2 Hybrid Algorithm for Continuous and Discrete Vari-
ables 47
5.5.3 Keywords 47
5.6 Hooke-Jeeveso 49
5.6.1 Modifications to the Original Algorithm 49
5.6.2 Algorithm Description 50
5.6.3 Keywords 53

5.7

Simplex Algorithm of Nelder and Mead with the Exten-
sionof O'Neill oL o4

5.7.1 Main Operations 54
5.7.2 Basic Algorithm 56
5.7.3 Stopping Criteria 58
5.7.4 O’Neill’s Modification 59
5.7.5 Modification of Stopping Criteria 59
5.7.6 Benchmark Tests 61
5777 Keywords o 64

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
6 Algorithms for One-Dimensional Optimization 65
6.1 Interval Division Algorithms 65
6.1.1 General Interval Division 65
6.1.2 Golden Section Interval Division 66
6.1.3 Fibonacci Division 67
6.1.4 Comparison of Efficiency 68
6.1.5 Master Algorithm for Interval Division 68
6.1.6 Keywords 69
7 Algorithms for Parametric Runs 71
7.1 Parametric Runs by Single Variation 71
7.1.1 Algorithm Description 71
712 Keywords 72
7.2 Parametric RunsonaMesh 72
7.2.1 Algorithm Description 72
722 Keywords o 73
8 Constraints 74
8.1 Constraints on Independent Variables 74
8.1.1 Box Constraints 74
8.1.2 Coupled Linear Constraints 75
8.2 Constraints on Dependent Variables 75
8.2.1 Barrier Functions 76
8.2.2 Penalty Functions 76
8.2.3 Implementation of Barrier and Penalty Functions . 77
9 Program 78
9.1 Interface to the Simulation Program 78
9.2 Interface to the Optimization Algorithm 79
9.3 Package genopt.algorithm 79
9.4 Implementing a New Optimization Algorithm 81
10 Installing and Running GenOpt 83
10.1 Installing GenOpt 83
10.2 System Configuration for JDK Installation 83
10.2.1 Linux/Unix 83
10.2.2 Microsoft Windows 84
10.3 Starting an Optimization with JDK Installation 84
10.4 System Configuration for JRE Installation 85
10.5 Starting an Optimization with JRE Installation 85
Copyright (c) 1998-2003 3

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group
11 Setting Up an Optimization Problem 86
11.1 File Specification 86
11.1.1 Initialization File 87
11.1.2 Configuration File 92
11.1.3 Command File 94
a) Specification of a Continuous Parameter . 94
b) Specification of a Discrete Parameter . . 95
c) Specification of Input Function Objects . 96
d) Structure of the Command File 97
11.14 LogFile 98
11.1.5 Output File 98
11.2 Pre-Processing and Post-Processing 98
a) Function Objects 98
b) Pre-Processing 99
c) Post-Processing 100
11.3 Truncation of Digits of the Cost Function Value 101
12 Conclusion 103
13 Acknowledgment 104
14 Notice 105
A Benchmark Tests 106
A.1 Rosenbrock, 106
A.2 Function 2D1 107
A3 Function Quad 108

Product and company names mentioned herein may be the trademarks of their
respective owners. Any rights not expressly granted herein are reserved.

Copyright (c) 1998-2003 4
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

1 Abstract

GenOpt is an optimization program for the minimization of a cost function
that is evaluated by an external simulation program. It has been developed for
optimization problems where the cost function is computationally expensive
and its derivatives are not available or may not even exist. GenOpt can be
coupled to any simulation program that reads its input from text files and
writes its output to text files. The independent variables can be continuous
variables (possibly with lower and upper bounds), discrete variables, or both,
continuous and discrete variables. Constraints on dependent variables can be
implemented using penalty or barrier functions.

GenOpt has a library with local and global multi-dimensional and one-
dimensional optimization algorithms, and algorithms for doing parametric runs.
An algorithm interface allows adding new minimization algorithms without
knowing the details of the program structure.

GenOpt is written in Java so that it is platform independent. The platform
independence and the general interface make GenOpt applicable to a wide range
of optimization problems.

GenOpt has not been designed for linear programming problems, quadratic
programming problems, and problems where the gradient of the cost function
is available. For such problems, as well as for other problems, special tailored
software exist which is more efficient.

Copyright (c) 1998-2003 5
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

2 Notation

1. We use the notation a 2 b to denote that a is equal to b by definition.
We use the notation a <« b to denote that a is assigned the value of b.

2. R™ denotes the Euclidean space of n-tuplets of real numbers. Vectors
x € R" are always column vectors, and their elements are denoted by
superscripts. The inner product in R” is denoted by (-,-) and for z,y €
R"™ defined by (z,y) = >, 2*y". The norm in R" is denoted by || - ||
and for € R” defined by ||z|| £ (x,z)'/2.

3. We denote by Z the set of integers, by Q the set of rational numbers, and
by N £ {0, 1, ...} the set of natural numbers. The set N is defined as
N, £ {1, 2, ...}. Similarly, vectors in R” with strictly positive elements
are denoted by R’ 2{reR"|2°>0,ic{l,...,n}} and the set Q
is defined as Q; 2 {g € Q| ¢ > 0}.

4. Let W be a set containing a sequence {w; }¥_,. Then, we denote by w,
the sequence {w;}¥_, and by W, the set of all k + 1 element sequences
in W.

5. If A and B are sets, we denote by A U B the union of A and B and by
A N B the intersection of A and B.

6. If S is a set, we denote by S the closure of S and by 25 the set of all
nonempty subsets of S.

7.1 D € Q" 4 is a matrix, we will use the notation d € D to denote
the fact that de Q™ is a column vector of the matrix D. Similarly, by
D C D we mean that D € Q™*P (1 < p < g) is a matrix containing only

columns of D. Further, card(D) denotes the number of columns of D.

8. f(-) denotes a function where (-) stands for the undesignated variables.
f(x) denotes the value of f(-) at the point x. f: A — B indicates that
the domain of f(-) is in the space A and its range in the space B.

9. We say that a function f : R™ — R is once continuously differentiable
if f(-) is defined on R™, and if f(-) has continuous derivatives on R™.

10. For z* € R™ and f: R™ — R continuously differentiable, we say that x*
is stationary if V f(z*) = 0.

11. We denote by {e;}!"_; the unit vectors in R".

12. We denote by p ~ U(0, 1) that p € R is a uniformly distributed random
number, with 0 < p < 1.

Copyright (c) 1998-2003 6
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

3 Introduction

The use of system simulation for analyzing complex engineering problems is
increasing. Such problems typically involve many independent variables®, and
can only be optimized by means of numerical optimization. Many designers use
parametric studies to achieve better performance of such systems, even though
such studies typically yield only partial improvement while requiring high la-
bor time. In such parametric studies, one usually fixes all but one variable and
tries to optimize a cost function? with respect to the non-fixed variable. The
procedure is repeated iteratively by varying another variable. However, every
time a variable is varied, all other variables typically become non-optimal and
hence need also to be adjusted. It is clear that such a manual procedure is
very time-consuming and often impractical for more than 2 or 3 independent
variables.

GenOpt, a generic optimization program, has been developed to find with
less labor time the independent variables that yield better performance of such
systems. GenOpt does optimization of a user-supplied cost function, using a
user-selected optimization algorithm.

In the most general form, the optimization problems addressed by GenOpt
can be stated as follows: Let X be a user-specified constraint set, and let
f: X — R be a user-defined cost function that is bounded from below. The
constraint set X consists of all possible design options, and the cost function
f(-) measures the system performance. GenOpt tries to find a solution to the
problem?

min fx). (3.1)
This problem is usually “solved” by iterative methods, which construct infi-
nite sequences, of progressively better approximations to a “solution”, i.e., a
point that satisfies an optimality condition. If X C R”", with some n € N,
and X or f(-) is not convex, we do not have a test for global optimality, and
the most one can obtain is a point that satisfies a local optimality condition.
Furthermore, for X C R"”, tests for optimality are based on differentiability
assumptions of the cost function. Consequently, optimization algorithms can
fail, possibly far from a solution, if f(-) is not differentiable in the continuous

'The independent variables are the variables that are varied by the optimization
algorithm from one iteration to the next. They are also called design parameters or
free parameters.

2The cost function is the function being optimized. The cost function measures
a quantity that should be minimized, such as a building’s annual operation cost, a
system’s energy consumption, or a norm between simulated and measured values in
a data fitting process. The cost function is also called objective function.

3Tf f(-) is discontinuous, it may only have an infimum (i.e., a greatest lower bound)
but no minimum even if the constraint set X is compact. Thus, to be correct, (3.1)
should be replaced by infzex f(x). For simplicity, we will not make this distinction.

Copyright (c) 1998-2003 7
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

independent variables. Some optimization algorithms are more likely to fail at
discontinuities than others. GenOpt has algorithms that are not very sensi-
tive to (small) discontinuities in the cost function, such as Generalized Pattern
Search algorithms, which can also be used in conjunction with heuristic global
optimization algorithms.

Since one of GenOpt’s main application fields is building energy use or
operation cost optimization, GenOpt has been designed such that it addresses
the special properties of optimization problems in this area. In particular,
GenOpt is designed for optimization problems where

1. the cost function may have to be defined on approximate numerical solu-
tions of differential algebraic equations, which may fail to be continuous
(see Section 4.1.4),

2. the number of independent variables is small,*

3. evaluating the cost function requires much more computation time than
determining the values for the next iterate,

4. analytical properties of the cost function (such as formula for the gradi-
ent) are not available.

GenOpt has following properties:

1. GenOpt can be coupled to any simulation program that calculates the
cost function without having to modify or recompile either program,
provided that the simulation program reads its input from text files and
writes its output to text files.

2. The user can select an optimization algorithm from an algorithm library,
or implement a custom algorithm without having to recompile and un-
derstand the whole optimization environment.

3. GenOpt does not require an expression for the gradient of the cost func-
tion.

With GenOpt, it is easy to couple a new simulation program, specify the
optimization variables and minimize the cost function. Therefore, in designing
complex systems, as well as in system analysis, a generic optimization program
like GenOpt offers valuable assistance. Note, however, that optimization is not
easy: The efficiency and success of an optimization is strongly affected by the
properties and the formulation of the cost function, and by the selection of an
appropriate optimization algorithm.

This manual is structured as follows: In Section 4, we classify optimiza-
tion problems and discuss which of GenOpt’s algorithms can be used for each
of these problems. Next, we explain the algorithms that are implemented in
GenOpt: In Section 5, we discuss the algorithms for multi-dimensional opti-
mization; in Section 6 the algorithms for one-dimensional optimization; and

4By small, we mean in the order of 10, but the maximum number of independent
variables is not restricted in GenOpt.

Copyright (c) 1998-2003 8
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

in Section 7 the algorithms for parametric runs. In Section 8, we discuss how
constraints on independent variables are implemented, and how constraints on
dependent variables can be implemented. In Section 9, we explain the struc-
ture of the GenOpt software, the interface for the simulation program and the
interface for the optimization algorithms. How to install and start GenOpt is
described in Section 10. Section 11 shows how to set up the configuration and
input files, and how to use GenOpt’s pre- and post-processing capabilities.

Copyright (c) 1998-2003 9
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

4 Optimization Problems

4.1 Classification of Optimization Problems

We will now classify some optimization problems that can be solved with
GenOpt’s optimization algorithms. The classification will be used in Section 4.2
to recommend suitable optimization algorithms.

We distinguish between problems whose design parameters are continuous
variables!, discrete variables?, or both. In addition, we distinguish between
problems with and without inequality constraints on the dependent variables.

4.1.1 Problems with Continuous Variables
We will use the notation
X&2{zeR"|I'<a'<u',ie{l,....,n}}, (4.1)
where —co < I' < u? < oo for i € {1,...,n}, to denote box-constraints on

independent continuous variables.

We will consider optimization problems of the form

P i 4.2
c min f(z), (4.2)
where f: R™ — R is a once continuously differentiable cost function.

Now, we add inequality constraints on the dependent variables to (4.2) and
obtain

P grélg f(z), (4.3a)
g(x) <0, (4.3b)

where everything is as in (4.2) and, in addition, g: R® — R™ is a once con-
tinuously differentiable constraint function (for some m € N). We will assume
that there exists an z* € X that satisfies g(x*) < 0.

4.1.2 Problems with Discrete Variables

Next, we will discuss the situation where all design parameters can only
take on user-specified discrete values.

Let X4 C Z™¢ denote the constraint set with a finite, non-zero number of
integers for each variable.

!Continuous variables can take on any value on the real line, possibly between
lower and upper bounds.
2Discrete variables can take on only integer values.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

10

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

We will consider integer programming problems of the form

Py wnel%?d f(@). (4.4)

4.1.3 Problems with Continuous and Discrete Variables

Next, we will allow for continuous and discrete independent variables.

We will use the notation

X £ X,.xXg, (4.52)
Xc é {xERnC | lléml Suia ie{l,---7nc}}7 (45b)

where the bounds on the continuous independent variables satisfy —oo < ¢ <
ut < oo for i € {1,...,n.}, and the constraint set Xy C Z"¢ for the discrete
variables is a user-specified set with a finite, non-zero number of integers for
each variable.

We will consider mixed-integer programming problems of the form

Py ;rg& fa), (4.6a)

where z = (z.,74) € R" x Z", f: R x Z" — R and X is as in (4.5).
Now, we add inequality constraints on the dependent variables to (4.6) and
obtain

Pcdg gg& f(.??), (473‘)
g(z) <0, (4.7b)

where everything is as in (4.6) and in addition g: R™ x R™ — R™ (for some
m € N). We will assume that there exists an z* € X that satisfies g(z*) < 0.

4.1.4 Problems whose Cost Function is Evaluated by a
Building Simulation Program

Next, we will discuss problem P, defined in (4.2) for the situation where
the cost function f: R™ — R cannot be evaluated, but can be approximated nu-
merically by approximating cost functions f*: R” x R} — R, where the second
argument is the precision parameter of the numerical solvers. This is typically
the case when the cost is computed by a thermal building simulation program,
such as EnergyPlus [CLW'01], TRNSYS [KDB76], or DOE-2 [WBB193]. In
such programs, computing the cost involves solving a system of partial and
ordinary differential equations that is coupled to algebraic equations. In gen-
eral, one cannot obtain an exact solution, but one can obtain an approximate
numerical solution. Hence, the cost function f(x) can only be approximated by
an approximating cost function f*(z;¢), where € € RY is a vector that contains

Copyright (c) 1998-2003 11
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

precision parameters of the numerical solvers. Consequently, the optimization
algorithm can only be applied to f*(z;¢€) and not to f(x).

In such thermal building simulation programs it is common that the ter-
mination criteria of the solvers that are used to solve the partial differential
equations, ordinary differential equations, and algebraic equations depend on
the independent variable z. Therefore, a perturbation of x can cause a change in
the sequence of solver iterations, which causes the approximating cost functions
f*(z;€) to be discontinuous in z. Furthermore, if variable step size integration
methods are used, then the integration mesh can change from one simulation
to the next. Therefore, part of the change in function values between differ-
ent points is caused by a change of the number of solver iterations, and by a
change of the integration mesh. Consequently, f*(;¢) is discontinuous, and a
descent direction for f*(+; €) may not be a descent direction for f(-). Therefore,
optimization algorithms can terminate at points that are non-optimal.

The best one can do in trying to solve optimization problems where the cost
and constraint functions are evaluated by a thermal building simulation pro-
gram that does not allow controlling the approximation error is to find points
that are close to a local minimizer of f(-). Numerical experiments show that
by using tight enough precision and starting the optimization algorithm with
coarse initial values, one often comes close to a minimizer of f(-). Furthermore,
by selecting different initial iterates for the optimization, or by using different
optimization algorithms, one can increase the chance of finding a point that is
close to a minimizer of f(-). However, even if the optimization terminates at
a point that is non-optimal for f(-), one may have obtained a better system
performance compared to not doing any optimization.

4.2 Algorithm Selection

In this section, we will discuss which of GenOpt’s algorithms can be se-
lected for the optimization problems that we introduced in Section 4.1.

4.2.1 Problem P.withn > 1

To solve P, with n > 1, the hybrid algorithm (Section 5.5, page 46) or the
GPS implementation of the Hooke-Jeeves algorithm (Section 5.2.2, page 29)
can be used. If f(-) is once continuously differentiable and has bounded level
sets (or if the constraint set X defined in (4.1) is compact) then these al-
gorithms construct accumulation points that are feasible stationary points of
problem (4.2) (see Theorem 5.1.24).

Alternatively, the Discrete Armijo Gradient algorithm (Section 5.3, page 32)
can be used. Every accumulation point of the Discrete Armijo Gradient algo-
rithm is a feasible stationary point.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

12

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

If f(-) is not continuously differentiable, or if f(-) must be approximated by
an approximating cost function f*(-;€) where the approximation error cannot
be controlled, as described in Section 4.1.4, then P, can only be solved heuris-
tically. We recommend using the hybrid algorithm (Section 5.5, page 46), the
GPS implementation of the Hooke-Jeeves algorithm (Section 5.2.2, page 29), a
Particle Swarm Optimization algorithm (Section 5.4, page 36), or the Nelder-
Mead’s Simplex algorithm (Section 5.7, page 54).

The following approach reduces the risk of only finding a point which is
non-optimal and far from a minimizer of f(-).

1. Selecting large values for the parameter Step in the optimization com-
mand file (see page 95),

2. selecting different initial iterates,

3. using the hybrid algorithm of Section 5.5, the GPS implementation of
the Hooke-Jeeves algorithm, a Particle Swarm Optimization algorithm,
and/or Nelder-Mead’s Simplex algorithm and select the best of the so-
lutions, and/or

4. doing a parametric study around the solution that has been obtained
by the hybrid algorithm of Section 5.5, the GPS implementation of
the Hooke-Jeeves algorithm, a Particle Swarm Optimization algorithm,
and/or Nelder-Mead’s Simplex algorithm. The parametric study can be
done using the algorithms Parametric (Section 7.1, page 71) and/or
EquMesh (Section 7.2, page 72).

If f(-) is continuously differentiable but must be approximated by approxi-
mating cost functions f*(-;€) where the approximation error can be controlled
as described in Section 4.1.4, then P. can be solved using the hybrid algo-
rithm (Section 5.5, page 46) or the GPS implementation of the Hooke-Jeeves
algorithm (Section 5.2.2, page 29), both with the error control scheme de-
scribed in the Model GPS algorithm 5.1.14 (page 22). The error control
scheme can be implemented using the value of GenOpt’s variable stepNumber
(page 77) and GenOpt’s pre-processing capabilities (Section 11.2, page 98). A
more detailed description of how to use the error control scheme can be found
in [PW03, WPO03].

4.2.2 Problem P, withn > 1

To solve P4, the hybrid algorithm (Section 5.5, page 46) or the GPS imple-
mentation of the Hooke-Jeeves algorithm (Section 5.2.2, page 29) can be used.
Constraints g(-) < 0 can be implemented using barrier and penalty functions
(Section 8, page 74).

If f(-) or g(-) are not continuously differentiable, we recommend using
the hybrid algorithm (Section 5.5, page 46) or the GPS implementation of the
Hooke-Jeeves algorithm (Section 5.2.2, page 29), and implement the constraints
9(-) < 0 using barrier and penalty functions (Section 8, page 74). To reduce

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

13

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

the risk of terminating far from a minimum point of f(-), we recommend the
same measures as for solving P..

4.2.3 Problem P,withn =1

To solve P. with n = 1, any of the interval division algorithms can be
used (Section 6.1, page 65). Since only few function evaluations are required
for parametric studies, the algorithm Parametric can also be used for this
problem (Section 7.1, page 71). We recommend to do a parametric study if
f() is expected to have several local minima.

4.2.4 Problem P, withn =1

To solve P4 with n = 1, the same applies as for P, with n = 1. Constraints
g(+) <0 can be implemented by setting the penalty weighting factor u in (8.8)
to a large value. This may still cause small constraint violations, but it is easy
to check whether the violation is acceptable.

4.2.5 Problem Py

To solve P4, a Particle Swarm Optimization algorithm can be used (Sec-
tion 5.4, page 36).

4.2.6 Problem P and P,

To solve P4, or P44, the hybrid algorithm (Section 5.5, page 46) or a
Particle Swarm Optimization algorithm can be used (Section 5.4, page 36).

4.2.7 Functions with Several Local Minima

If the problem has several local minima, we recommend using the hybrid
algorithm (Section 5.5, page 46), a Particle Swarm Optimization algorithm
(Section 5.4, page 36), or run any of the other algorithms multiple times with
different initial values.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

14

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5 Algorithms for
Multi-Dimensional
Optimization

5.1 Generalized Pattern Search Methods
(Analysis)

Generalized Pattern Search (GPS) algorithms are derivative free optimiza-
tion algorithms for the minimization of problem P. and P4, defined in (4.2)
and (4.3), respectively. We will present the GPS algorithms for the case where
the function f(-) cannot be evaluated exactly, but can be approximated by
functions f*: R™ x RY — R, where the second argument ¢ € R is the preci-
sion parameter of the PDE, ODE, and algebraic equation solvers. Under the
assumption that the cost function is continuously differentiable, all the accumu-
lation points constructed by the GPS algorithms are stationary, while under the
assumption that f(-) is only locally Lipschitz continuous, the GPS algorithms
converge to points at which the Clarke generalized directional derivatives are
nonnegative in predefined directions.

Obviously, the explanations are similar for problems where f(-) can be eval-
uated exactly, except that the scheme to control € is not applicable, and the
approximate functions f*(-;¢€) are replaced by f(-).

What GPS algorithms have in common is that they define the construction
of a mesh in R™, which is then explored according to some rule that differs
between the various members of the family of GPS algorithms. If no decrease
in cost is obtained on mesh points around the current iterate, then the mesh is
refined and the process is repeated.

We now start with explaining the general framework of GPS algorithm that
will be used to implement different instances of GPS algorithms in GenOpt.
The discussion follows the more detailed description of [PWO03].

Copyright (c) 1998-2003 15
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.1.1 Assumptions

We will assume that f(-) and its approximating functions { f(; E)}eem have
the following properties.

Assumption 5.1.1
1. There exists an error bound function ¢: RT — Ry such that for any
bounded set S C X, there exists an es € RL and a scalar Kg € (0, 00)
such that for all x € S and for all € € RY., with € < eg L

| f*(zi€) = f(@)] < Ks o(e). (5.1)
Furthermore,

1ir% w(e) = 0. (5.2)

2. The function f: R™ — R is at least locally Lipschitz continuous. 0

Remark 5.1.2 The functions {f*(-;€)}ccrs may be discontinuous. 0

Next, we state an assumption on the level sets of the family of approximate
functions. To do so, we first define the notion of a level set.

Definition 5.1.3 (Level Set) Given a function f: R™ — R and an o € R,
such that a > inf ern f(x), we will say that the set L, (f) C R™, defined as

Lo(f) £ {z €R" | f(z) <a}, (5:3)

is a level set of f(-), parametrized by «. 0

Assumption 5.1.4 (Compactness of Level Sets) Let {f*(-;e)}ee]Rq+ be as
in Assumption 5.1.1 and let X C R™ be the constraint set. Let xog € X be
the initial iterate and g € RY be the initial precision setting of the numerical
solvers. Then, we assume that there exists a compact set C C R™ such that

Ly (ro;e0) (f7(5€)) N X CC, Ve<e. (5.4)
O

5.1.2 Geometric Aspects of the Algorithms

A major aspect of any GPS algorithm is the rule for generating the meshes
on which the searches are conducted. The main difference between our rule for
mesh generation and those of others, such as the one of Audet’s and Dennis
[ADO03], is that we use a different rule for mesh refinement, which results in
our meshes being nested, and hence simplifies the explanation of the geometry
of mesh generation. As far as we can tell, our simplification has no impact on

'For e € R, by € < es, we mean that €' < €5, for all i € {1,...,q}.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

16

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

computational efficiency.

The k-th iteration of our GPS algorithms has the following structure. We
begin with the current iterate xj, with the precision settings of the PDE, ODE;,
and algebraic equation solvers e, and with the mesh My. A set-valued map is
used to select a finite subset of mesh points in My, for the so-called “global
search”. If this set contains a point &’ such that f*(a';¢€) < f*(xk;€), then we
set 11 = ', M1 = Mg, and update the index k to k + 1. If the global
search set does not yield a point of lower cost, we proceed to a “local search”,
which consists of evaluating f*(-;¢) on a set of neighbors of x in the mesh
M. If a point 2’ of lower cost is found, then we set xgxy1 = ', Mgy = My,
and update the index k to k + 1. If the local search also fails to produce an
improvement, then the mesh My, is subdivided to yield a finer mesh M. 1, and
the precision of the PDE, ODE, and algebraic equation solvers, ¢, is increased
according to a prescribed rule. After updating k£ to k + 1, the entire process is
repeated.

We will now flesh out the geometric details of our GPS algorithms. We
begin with the construction of the meshes.
a) Generation of the Meshes

Before we can explain how the mesh is to be generated, we must introduce
the notions of a positive combination and of a positive span, as defined by
Davis [Davb4], and that of a base direction matrix.

Definition 5.1.5 (Positive Combination, Positive Span)

1. A positive combination of vectors {v;}}_, is a linear combination Y _| \; v;

with A\; >0 for alli € {1, ..., p}.

2. A positive span for a subspace S C R™ is a set of vectors {v;}_, such
that every x € S can be expressed as a positive combination of the vectors
{vi}Y_,. The matriz defined by V £ [v1, ..., v,] is said to be a positive
spanning matrix.

3. Let the subspace S C R™ be of dimension m and V € R™"*P be a positive
spanning matriz for S. If p = m + 1, then V is said to be a minimal
positive spanning matrix. m

In [Davb4, CPO00], a positive basis for a subspace S C R is defined as a
set of positively independent vectors whose positive span is S. Note that a
positive basis is different from a minimal positive spanning set. For example,
if S = R2, the set {e1, ea, —e1, —e2} is a positive basis but not a minimal
positive spanning set. A minimal positive spanning set is {e1, e2, —(e1 + e2)}.

We will denote by S the set of all matrices whose columns positively span
R™.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

17

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Next, we define a base direction matriz. We will use the columns of the
base direction matrix to specify the mesh and hence the search directions. The
base direction matrix will be fixed for all iterations.

Definition 5.1.6 (Base Direction Matrix) LetS be the set of all matrices
whose columns positively span R™. Then, the base direction matrix D is any
matriz satisfying

DeQ™?ns (5.5)

where p > n is any arbitrary but finite natural number. 0

Remark 5.1.7 The fact that the matrix D has only rational elements makes
it very easy to establish the minimal distance between distinct mesh points.
At the same time, from a computational point of view, requiring D € Q"*?NS§
rather than D € R"*? NS does not result in any practical inconvenience.

Note that the base direction matrix D may not be a minimal positive span-
ning matrix, e.g., for the one-dimensional case, D = [-1, 1, 1.1] would not
be minimal. Hence, D can be used to generate a set Dp, which we define as
the set of all submatrices of D (constructed by deleting columns of 13) whose

column vectors positively span R™.

The meshes, over which our algorithms search, are defined iteratively, as
follows.
Definition 5.1.8 (k-th Mesh) Letxg € X, r,s0,k € N, withr > 1, {t; f;ol C
N, and the base direction matriz D € Q"*P NS be given, and let

1
L -
Ak 7Sk ’ (56)
where for k >0
k—1
Sk = SO+Zti~ (5.7)
i=0
Then we define the mesh My, by
My, £ {zo+ Ay Dm | m € NP}, (5.8)
O

It should be clear from the definition of the meshes that whenever ¢; > 0,
the mesh M1 is obtained from the mesh Ml by dividing the intervals between
neighboring points of the mesh My, into rf* subintervals by adding additional
mesh points. Therefore, it is clear that the meshes are nested, i.e., My C My
with equality if Agxi1 = Ag.

We now present two examples: first a simple example of a mesh that is
generated by a minimal positive spanning matrix, and then an example of a
mesh generation using a more complicated base direction matrix D.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

18

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

Figure 5.1: Minimal positive spanning matriz D= [c?l, C/i\g, C/l\g] and generated
mesh in R2.

Example 5.1.9 In Fig. 5.1, the base direction matrix D is a minimal positive
spanning matrix, defined by

P SN 1 -1 -1
D=(d & d5)2 (0) _1) . (5.9)
In Fig. 1, the bullets (o) are the mesh points of the mesh My = {0 +
1Dm | m € N*}. For example, in Fig. 1, Z = Dm, withm = (3, 2, 1)T.

Next we present a mesh constructed using a more complicated base direc-
tion matrix.

Example 5.1.10 Fig. 5.2 shows a mesh generated using xg = 0, Ap =1 and
the base direction matrix

IS, 1 —05 —0.75
D_(d1 @ dg)—(o . _0_75>. (5.10)

Fig. 5.2(a) shows the vectors {cﬁ}?:l (bold arrows) and all possible mesh points
of the form D v with v = (n, 0, 0)T,v=(0, n, 0)7, and v = (0, 0, n)” where
n € N. Each arrow points to a mesh point and indicates how the base vectors
{d;}3_, are added to obtain the mesh points. Fig. 5.2(b) shows the set of
all mesh points of the form Dv with v = (n, m, 0)7 and v = (n, 0, m)T
where n,m € N. For example, the point labeled with z is given by z = Dwv
where v = (2, 1, 0)7. In Fig. 5.2(c), more mesh points are drawn by adding
some positive multiple of cfg to some mesh points that have been generated in
Fig. 5.2(b). For clarity, not all possible mesh points are drawn. In Fig. 5.2(d),
additional mesh points are generated by adding some positive multiple of C/Z\g to
some mesh points of Fig. 5.2(c). Fig. 5.2(e) finally contains all possible mesh
points, now indicated by bullets (o). For clarity, only the vectors {c@}f’:l are
drawn in Fig. 5.2(e). 0

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

19

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group
d
(1 (
=3 -2 -1 0 2 =3 -2 -1 0 2

\ \ \
X X
. \ \ \
\ \ d AV N
X W, X NNE
X Y v
\ \
x\ X\
\ \ 1 n n) L4l n Lo)
=3 =2 =1 (Z =3 2 A Y 2
AV \Y < AV A
\ AN 7
L ¥)")4
(c) (d)
3
q [] [J o [J o q o q °) L] L J
o
L [] [] [] [] [] [[] [[] p [] [J
q L] [J [] [J [] q [] q L]) L] L J
- . <4 6 p. 3
q L] [J [] [J q [] q o p L] L J
L L] [J [[J [[[[[p L] L J
(e)
Figure 5.2: Generation of a mesh in R2.
Copyright (c) 1998-2003 20

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

b) Global and Local Search Set

We will now characterize the set-valued maps that determine the mesh
points for the “global” and “local” searches. Note that the images of these
maps may depend on the entire history of the computation.

Definition 5.1.11 (Search Direction Matrices) LetS be the set of all ma-
trices whose column vectors positively span R™. Given a base direction matriz
D, we define the set of search direction matrices to be

Ds2{D|DcDnNS} (5.11)
where the matriz D is constructed by deleting columns of D. 0

Definition 5.1.12 Let X, C R” and A, C Q4 be the sets of all sequences
containing k elements, let Ml be the current mesh, let Dy be the set of search
direction matrices, and let e € R be the precision of the numerical solvers.

1. We define the global search set map to be any set-valued map
i X X Ay xRE — (2" nX) up (5.12a)
whose image Y (xy,, Ay, €) contains only a finite number of mesh points.

2. We define the local search direction map to be any map
55k:Xk Xék—ﬁ])ﬁ. (5.12Db)

3. We will call G, = vi(zy, Ay, €) the global search set.
4. With Dy = 05 (2, Ay), we will call

Ly 2 {xr+ A Die; | j=1,..., card(Dy)} N X (5.12¢)

the local search set. 0

Remark 5.1.13

1. The map (-, -) can be dynamic in the sense that if {xy, }_, £ ve(zs, Ay, €),

then the rule for selecting z, 1 < i< I, can depend on {xki}i;é and

{f*(xki;e)}f;é. It is only important that the global search terminates
after a finite number of computations, and that G, C (2"+ N X) U (.

2. As we shall see, the global search affects only the efficiency of the algo-
rithm but not its convergence properties. Any heuristic procedure that
leads to a finite number of function evaluations can be used for v (-, -, -).

3. The empty set is included in the range of yi(:, -,) to allow omitting the
global search.

4. Since the range of 5 ,(-,-) is Dp

. . 5, any image of 51371@(" -) is a positive
spanning matrix.

O

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

21

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.1.3 A Model Adaptive Precision GPS Algorithm

We are now ready to present a model generalized pattern search algorithm
with adaptive precision function evaluations.

Algorithm 5.1.14 (Model GPS Algorithm)

Data: Initial iterate xy € X.

r € N, r > 1, used to compute Ay.

Initial mesh size exponent sy € N.

Base direction matrix D € Q"*P NS (see Definition 5.1.6).
Maps: Global search set map 7j: Xj x Ay x RL — (2" 0 X) U 0.

Local search direction map d5 ,: X3 x A; — Dy (see Definition 5.1.12).

Function p: Ry — R% (to assign €), such that the composition
pop: Ry — Ry is strictly monotone decreasing and satisfies
w(p(A))/A — 0, as A — 0.

Step 0: [Initialize k =0, Ag = 1/r°°, and € = p(1).

Step 1: Global Search
Construct the global search set G, = v (21, Ay, €).

If f*(2';€) < f*(ax;e€) for any 2’ € Gy, go to Step 3. Else, go to Step 2.

Step 2: Local Search
Construct the search direction matrix Dy = 05 , (2, Ay).

Construct Ly, = {xy + Ay Dye; | 5 =1,..., card(Dy)} N X and
evaluate f*(-;¢€) for any 2’ € L, until some a’ € Ly

satisfying f*(a';€) < f*(xk;€) is obtained, or until all points in Ly

are evaluated.

Step 3: Parameter Update
If there exists an ©’ € G U Ly, satisfying f*(a';¢€) < f*(zx;€),
set Tpr1 = ', Skr1 = Sk, Apr1 = Ag, and do not change .
Else, set xx+1 = K, Sk+1 = Sk + tk, with ¢, € Ny arbitrary,
Ak+1 = 1/7’87””‘*'1, €= p(Ak+1/A0).

Step 4: Replace k by k£ + 1, and go to Step 1.

Remark 5.1.15
1. If the optimization is started with ¢ = p(1) too small, the computation
time may become unnecessarily large. Therefore, in implementing the
Model GPS Algorithm, one may allow to redefine the function p(-) by
p(-) « cp(-), with ¢ € (0, 1), to decrease the initial number of solver
iterations. Redefining the function p(-) is allowed over a preset number
of GPS iterations.

2. To ensure that € does not depend on the scaling of Ag, we normalized
the argument of p(-). In particular, we want to decouple the precision
settings of the solvers from the user’s choice of the initial mesh divider.

3. Audet and Dennis [ADO03] increase and decrease the mesh divider using
the formula Agi1 = 7™ Ag where 7 € Q, 7 > 1, and m is any element of

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

22

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Z. Thus, our mesh construction is a special case of Audet’s and Dennis’
construction since we set 7 = 1/r, with » € N4, r > 2 (so that, 7 < 1)
and m € N. We prefer our construction because it leads to a simpler
geometric explanation. In the Appendix, we present a modified version
of the algorithm of Audet and Dennis, and show that our analysis remains
valid.

4. In Step 2, once a decrease of the cost function is obtained, one can
proceed to Step 3. However, one is allowed to evaluate the approximating
cost function at more points in £y in an attempt to obtain a bigger
reduction in cost. However, one is allowed to proceed to Step 3 only
after either a cost decrease has been found, or after all points in Ly are
tested.

5. In Step 3, we are not restricted to accepting the z’ € Gy U L that gives

lowest cost value. But the mesh divider Ay, is reduced only if there exists

no x’ € Gy, ULy, satisfying f*(2';€) < f*(ak;e). O
5.1.4 Convergence Results

a) Unconstrained Minimization

We will now present the convergence results for the GPS algorithms. See [PW03]

for a detailed discussion and convergence proofs.

We will now present the convergence properties of the Model GPS Algo-
rithm 5.1.14 on unconstrained minimization problems, i.e., for X = R".

First, we will need the notion of a refining subsequence, which we define as
follows:

Definition 5.1.16 (Refining Subsequence) Consider a sequence {xy}72,
constructed by Model GPS Algorithm 5.1.14. We will say that the subsequence
{zk}rek is the refining subsequence, if Agt1 < Ak for allk € K, and Ay =
Ay for all k ¢ K. 0

To state the convergence result for the case where f(-) is only Lipschitz
continuous, we recall the definition of Clarke’s generalized directional derivative
[Cla90]:

Definition 5.1.17 (Clarke’s Generalized Directional Derivative)

Let f: R™ — R be locally Lipschitz continuous at the point x* € R™. Then,
Clarke’s generalized directional derivative of f(-) at x* in the direction h € R™
is defined by

fa+th) - ()

d°f(z*; h) £ limsup : (5.13)
|

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

23

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

2 =2 2 1

Figure 5.3: Visualization of equation (5.15).

Theorem 5.1.18 Suppose that Assumptions 5.1.1 and 5.1.4 are satisfied and
let z* € R™ be an accumulation point of a refining subsequence {xy }rek, con-
structed by Model GPS Algorithm 5.1.14. Let d be any column of the base
direction matriz D along which f*(-;) was evaluated for infinitely many iter-
ates in the subsequence {xy}rex. Then,

dVf(z*; d) > 0. (5.14)

O

Remark 5.1.19 Note that (5.14) is not a standard optimality condition since
it holds only for certain directions d. Consider, for example, the Lipschitz
continuous function

el 2
flz) 2 {||x||, it z* >0 and z* > 0, (5.15)

|| cos(4 arccos (z!/[|]])), otherwise,

which is shown in Fig. 5.3. This function is not differentiable at the origin,
but it does have directional derivatives everywhere. At the origin 2* = 0, we
have df(z*;d) = 1 for d € {*e1, *es}, but the directional derivative along
s= (=1, —D7T is df(z*;s) = —V/2.

Using the Hooke-Jeeves algorithm with initial value zo = (—1, 0)7 and A =
Ag = 1, we would converge to the origin, a point that possess some negative
directional derivatives. O

We now state that pattern search algorithms with adaptive precision function
evaluations converge to stationary points.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

24

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Theorem 5.1.20 (Convergence to a Stationary Point) Suppose that As-
sumptions 5.1.1 and 5.1.4 are satisfied and, in addition, that f(-) is once contin-
uwously differentiable and that X = R™. Let z* € R™ be an accumulation point of
a refining subsequence {xk } ek, constructed by Model GPS Algorithm 5.1.14.
Then,

Vi(z*) =0. (5.16)
O

b) Box-Constrained Minimization

We now extend our convergence proofs to the box-constrained problem (4.2),
by following the arguments in Audet and Dennis [AD03]. The more general
case of linearly-constrained problems is discussed in [AD03, PW03].

First, we introduce the notion of a tangent cone and a normal cone, which
are defined as follows:

Definition 5.1.21 (Tangent and Normal Cone)
1. Let X C R™. Then, we define the tangent cone to X at a point z* € X

by
Tx(2*) & {p(x—2*) | p>0, 2 € X}. (5.17a)
2. Let Tx(z*) be as above. Then, we define the normal cone to X at z* € X
by
Nx(2*) £ {v e R" |Vt € Tx(z%), (v, t) < 0}. (5.17b)
O

Next, we introduce the concept of conformity of a pattern to a constraint
set (see [ADO03]), which will enable us to extend the convergence results for
our Model GPS Algorithm 5.1.14 from unconstrained optimization problems
to box-constrained optimization problems.

Definition 5.1.22 The function 65 ,: X x Ay — Dp is said to conform
to the feasible set X, if for some p > 0 and for each xz* € 0X satisfying
lz* — x| < p, the tangent cone Tx (x*) can be generated by nonnegative linear
combinations of the columns of a subset Dy-(x) C Dy = 6 (2, Ag)-

Furthermore, we define Dy« (-) to be such that all its columns belong to Tx (x

*)‘
(|

Remark 5.1.23 The definition that all columns of D, () belong to Tx (z*)
facilitates the extension of Theorem 5.1.18 to the constraint case. m

We can now state that the accumulation points generated by Model GPS
Algorithm 5.1.14 are feasible stationary points of problem (4.2).

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

25

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Theorem 5.1.24 (Convergence to a Feasible Stationary Point)
Suppose Assumptions 5.1.1 and 5.1.4 are satisfied and that f(-) is once con-
tinuously differentiable. Let z* € X be an accumulation point of a refining
subsequence {xytrex constructed by Model GPS Algorithm 5.1.14 in solving
problem (4.2).

If there exists a k* € N such that for all k > k*, the local search direction
maps 05 .. Xy X Ay — Dg conform to the feasible set X, then

(Vf(x™), t) >0, Vit e Tx(z"), (5.18a)
and

~Vf(z*) € Nx(z*). (5.18b)

When the function f(-) is only locally Lipschitz continuous, we obtain
following corollary which follows directly from Theorem 5.1.18 and equation
(5.18a).

Corollary 5.1.25 Suppose that the assumptions of Theorem 5.1.24 are satis-
fied, but f(-) were only locally Lipschitz continuous. Then,

d°f(z*;d) >0, Vd& Dy-(z*). (5.19)

O

5.2 Generalized Pattern Search Methods
(Implementations)

We will now present different implementations of the Generalized Pattern
Search (GPS) algorithms. They all use the Model GPS Algorithm 5.1.14 to
solve problem P, defined in (4.2). The problem P, defined in (4.3) can be
solved by using penalty functions as described in Section 8.2.

We will discuss the implementations for the case where the function f(-)
cannot be evaluated exactly, but will be approximated by functions f*: R™ x
R% — R, where the second argument e € RY is the precision parameter of the
PDE, ODE, and algebraic equation solvers. This includes the case where € is
not varied during the optimization, in which case the explanations are identi-
cal, except that the scheme to control € is not applicable, and the approximate
functions f*(-;€) are replaced by f(-).

If the cost function f(-) is approximated by functions {f*(:; e)}eeRq+ with

adaptive precision €, then the function p: Ry — R (to assign €) can be im-
plemented by using GenOpt’s pre-processing capability (see Section 11.2).

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

26

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.2.1 Coordinate Search Algorithm

We will now present the implementation of the Coordinate Search algo-
rithm with adaptive precision function evaluations using the Model GPS Algo-
rithm 5.1.14. To simplify the implementation, we assign f*(z;€) = oo for all
x ¢ X where X is defined in (4.1).

a) Algorithm Parameters
The base direction matrix is defined as
D2 [+ster, —ster,..., +8"en, —5" €] (5.20)
where s* € R, i € {1,...,n}, is a scaling for each parameter (specified by

GenOpt’s parameter Step).

r € N, r > 1, used to compute the mesh size divider is defined by the
parameter MeshSizeDivider, the initial value for the mesh size exponent s¢ €
N is defined by the parameter InitialMeshSizeExponent, and the mesh size
exponent increment tj is fixed for all £ € N and defined by the parameter
MeshSizeExponentIncrement.

b) Global Search

In the Coordinate Search Algorithm, there is no global search. Thus, G, = ()
for all k£ € N.
c) Local Search

The local search direction map is given by Dy, = 65, (2, A,) £ D for all

keN.

The local search set Gy is constructed using the set-valued map Ej: R™ x
Q4 x RT — 2M& | defined as follows:

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

27

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Algorithm 5.2.1 (Map Ej: R" x Q4 x RY — 2"+ for “Coordinate Search”)

Parameter: Base direction matrix D = [+ster, —ster,..., +8"en, —s"en].
Vector pu € N”.
Input: Iteration number k£ € N.
Base point x € R".
Mesh divider Ay € Q4.
Output: Set of trial points 7.
Step O: Initialize 7 = 0.
If k = 0, initialize , u* = 0 for all i € {1,...,n}.
Step 1: Fori=1,...,n

Set ¥ =+ Ay Degs_y4p and T — T U {F}.
If f*(z;€) < f*(xs€)

Set = = 7.
else
If 4uf =0, set pui =1, else set u = 0.
Set Z=ax+ArDegi 14, and T — T U{Z}.
If f* (5 €) < f*(5€)
Set x = .
else
If o =0, set u* =1, else set u® = 0.
end if.
end if.
end for.
Step 2: Return 7.

Thus, Fy(x, Ag,e) =7 for all k € N.

Remark 5.2.2 In Algorithm 5.2.1, u € N™ contains for each coordinate direc-
tion an integer 0 or 1 that indicates whether a step in the positive or in the
negative coordinate direction yield a decrease in cost in the last iteration. This
reduces the number of exploration steps. 0

d) Parameter Update

The point 2’ in Step 3 of the GPS Model Algorithm 5.1.14 corresponds to
2’ £ argmingeg, f*(7;¢€) in the Coordinate Search algorithm.
e) Keywords

For the GPS implementation of the Coordinate Search Algorithm, the com-

mand file (see page 94) must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
file must have the following form:

Algorithm{
Main = GPSCoordinateSearch;

Copyright (c) 1998-2003 28
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
MeshSizeDivider = Integer; // 1 < MeshSizeDivider

InitialMeshSizeExponent Integer; // 0 <= InitialMeshSizeExponent
MeshSizeExponentIncrement = Integer; // 0 < MeshSizeExponentIncrement
Number0fStepReduction Integer; // 0 < NumberOfStepReduction

}

The entries are defined as follows:
Main The name of the main algorithm.

MeshSizeDivider The value for r € N, r > 1, used to compute Ay = 1/
(see equation (5.6)). A common value is r = 2.

InitialMeshSizeExponent The value for sop € Nin (5.6). A common value
is So = 0.

MeshSizeExponentIncrement The value for ¢, € N (fixed for all k € N)
n (5.6). A common value is t; = 1.

NumberOfStepReduction The maximum number of step reductions before
the algorithm stops. Thus, if we use the notation m 2 NumberOfStepReduction,
then we have for the last iterations Ay = 1/r%0+mt A common value
ism=4.

5.2.2 Hooke-Jeeves Algorithm

We will now present the implementation of the Hooke-Jeeves algorithm [HJ61]
with adaptive precision function evaluations using the Model GPS Algorithm 5.1.14.
The modifications of Smith [Smi69], Bell and Pike [BP66] and De Vogelaere [DV68]
are implemented in this algorithm.

To simplify the implementation, we assign f*(z;€) = oo for all ¢ X where
X is defined in (4.1).

a) Algorithm Parameters

The algorithm parameters ﬁ, r, 8o, and t; are defined identical as in the
Coordinate Search algorithm. See page 27.
b) Map for Exploratory Moves

To facilitate the algorithm explanation, we use the set-valued map Ej: R™ x
Q4+ xRY — 2Mk as defined in Algorithm 5.2.1. The map Ej(-, -, -) defines the
“exploratory moves” in [HJ61], and will be used in Section c) to define the
global search set map and, under conditions to be seen in Section d), the local
search direction map as well.

c) Global Search Set Map

The global search set map (-, -, -) is defined as follows. Because ~o(-, -, -)
depends on z_1, we need to introduce z_1, which we define as z_; £ .

Copyright (c) 1998-2003 29
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Algorithm 5.2.3 (Global Search Set Map v;: X, x A, x R} — 2Mr)

Map: Map for “exploratory moves” Ej: R" x Q4 x R% — 2M,
Input: Previous and current iterate, xx_1 € R™ and x; € R".
Mesh divider Ag € Q4.
Solver precision € € RY.
Output: Global search set G.
Step 1: Set © =z + (xp — Tp—1)-
Step 2: Compute Gy = Fi(x, Ag,€).
Step 3: If (mingeg, f*(z;€)) > f*(wkse)
Set G, «— G U Ek(xk,Ak,e).
end if.
Step 4: Return G;..

Thus, (2, Ay, €) = Gr.

d) Local Search Direction Map

If the global search, as defined by Algorithm 5.2.3, has failed in reduc-
ing f*(-;€), then Algorithm 5.2.3 has constructed a set Gj that contains the
set {xx + ApDe; | i = 1,...,2n}. This is because in the evaluation of
Ex(xk, Ak, €), defined in Algorithm 5.2.1, all “If f*(z;€) < f*(z;€)” statements
yield false, and, hence, one has constructed {xy + A De; |[i=1,...,2n} =
Ek(xk,Ak,e). N

Because the columns of D span R" positively, it follows that the search on
the set {zr +Ar De; |i=1,...,2n} is a local search. Hence, the constructed
set

Ly 2 {a,+ApDe; |i=1,...,2n} C Gy (5.21)

is a local search set. Consequently, f*(-;¢€) has already been evaluated at all
points of £ (during the construction of Gi) and, hence, one does not need to
evaluate f*(-;€) again in a local search. In view of (5.12c) and (5.21), the local
search direction map is given by Dy = d5 ; (2, Ay) 2 D.

e) Parameter Update

The point 2’ in Step 3 of the GPS Model Algorithm 5.1.14 corresponds to
7’ & argmingeg, f*(7;¢€) in the Hooke-Jeeves algorithm. (Note that £i C Gy
if a local search has been done as explained in the above paragraph.)

f) Keywords
For the GPS implementation of the Hooke-Jeeves algorithm, the command

file (see page 94) must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
file must have the following form:

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

30

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
Algorithm{

Main = GPSHookelJeeves;

MeshSizeDivider = Integer; // bigger than 1

InitialMeshSizeExponent = Integer; // bigger than or equal to O

MeshSizeExponentIncrement = Integer; // bigger than 0
Number0fStepReduction Integer; // bigger than O

}

The entries are the same as for the Coordinate Search algorithm, and explained
on page 28.

Copyright (c) 1998-2003 31
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt

Generic Optimization Program

Version 2.0.0 ¢

Lawrence Berkeley National Laboratory

Building Technologies Department

Simulation Research Group

5.3 Discrete Armijo Gradient

The Discrete Armijo Gradient algorithm can be used to solve problem P,
defined in (4.2) where f(-) is continuously differentiable.

The Discrete Armijo Gradient algorithm approximates gradients by finite
differences. It can be used for problems where the cost function is evaluated by
computer code that defines a continuously differentiable function but for which
obtaining analytical expressions for the gradients is impractical or impossible.

Since the Discrete Armijo Gradient algorithm is sensitive to discontinuities
in the cost function, we recommend not to use this algorithm if the simula-
tion program contains adaptive solvers with loose precision settings, such as
EnergyPlus [CLW'01]. On such functions, the algorithm is likely to fail. In
Section 4.2, we recommend algorithms that are better suited for such situations.

We will now present the Discrete Armijo Gradient algorithm and the Armijo
step-size subprocedure.
Algorithm 5.3.1 (Discrete Armijo Gradient Algorithm)

Data:

Step 0:
Step 1:

Step 2 :

Step 3 :

Step 4 :
Step 5 :

Initial iterate x¢ € X.

a,B€(0,1), v € (0,00), k*, ko € Z,

lmaz, k& € N (for reseting the step-size calculation).
Termination criteria €,,, €, € Ry, imqs € N.
Initialize ¢ = 0 and m = 0.

Compute the search direction h;.

If 5™ < €, stop.

Else, set € = 3™ and compute, for j € {1,...,n},
hi = —(f(z; +eej) — flai)) /e

Check descent.

Compute A(x;; hy) = (f(x; + €ehi) — f(z1)) /e

If A(x;;hi) <0, go to Step 3.

Else, replace m by m + 1 and go to Step 1.

Line search.

Use Algorithm 5.3.2 (which requires k*, ;4. and k) to compute k;.
Set

N = arg min f(ﬂil + A hl) (522)
Ae{pri,pri=1}

If f(x; + A hi) — f(zi) > —7¢€, replace m by m + 1 and go to Step 1.

Set Tit1 = X + A .
If ||\; hi]| < €, stop. Else, replace ¢ by i + 1 and go to Step 1.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

32

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Algorithm 5.3.2 (Armijo Step-Size Subprocedure)

Data: Iteration number i € N, iterate z; € R", search direction h; € R",
k* ki1 € Z, 0175 S (07].), and A(.’Ei; hl) € R with A(.T“ hl) <0,
parameter for restart l,,q:, % € N.

Step 0: Initialize [= 0.
If i =0, set k' = k*, else set k' = k;_1.
Step 1: Replace [by [+ 1, and test the conditions
Flai+ 8" h) — f(x) < B aA(wishy), (5.23a)
Flai+ 8" "Thy) = fz) > B LaA(zish). (5.23b)
Step 2: If k' satisfies (5.23a) and (5.23b), return k’.
Step 3: If k' satisfies (5.23b) but not (5.23a),

replace k' by k' + 1.
else,
replace k' by k' — 1.
If | <lpae or ki1 < k* 4 K, go to Step 1. Else, go to Step 4.

Step 4: Set K2 {k€Z| k> k*}, and compute
K 2 mingexc{k | fzi + % hi) — f(2:) < 5% a A(wi; hi)}.
Return &'

Note that in Algorithm 5.3.2, as § — 1, the number of tries to compute the
Armijo step-size is likely to go to infinity. Under appropriate assumptions one
can show that o = 1/2 yields fastest convergence [Pol97].

The step-size Algorithm 5.3.2 requires often only a small number of function
evaluations. However, occasionally, once a very small step-size has occurred,
Algorithm 5.3.2 can trap the Discrete Armijo Gradient algorithm into using a
very small step-size for all subsequent iterations. Hence, if k;—1 > k* + K, we
reset the step-size by computing Step 4.

Algorithm 5.3.1 together with the step-size Algorithm 5.3.2 have the fol-
lowing convergence properties [Pol97].

Theorem 5.3.3 Let f: R™ — R be continuously differentiable and bounded
below.

1. If Algorithm 5.3.1 jams at x;, cycling indefinitely in the loop defined by
Steps 1-2 or in the loop defined by Steps 1-4, then V f(x;) = 0.

2. If {x;}22, is an infinite sequence constructed by Algorithm 5.5.1 and Al-
gorithm 5.8.2 in solving (4.2), then every accumulation point T of {x;}32,
satisfies V f(Z) = 0.

O

Note that € h; has the same units as the cost function, and the algorithm
evaluates x; + A\ h; for some A € R;. Thus, the algorithm is sensitive to the
scaling of the problem variables, a rather undesirable effect. Therefore, in the

Copyright (c) 1998-2003 33
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

implementation of Algorithm 5.3.1 and Algorithm 5.3.2, we normalize the cost
function values by replacing, for all z € R™, f(x) by f(z)/f(z), where ¢ is
the initial iterate. Furthermore, we set £y = 0 and evaluate the cost function
for the values x? + 27 s/, j € {1,...,n}, where 2/ € R is the j-th component
of the design parameter computed in Algorithm 5.3.1 or Algorithm 5.3.2 and
Y’ € R and s’ € R are the setting of the parameters Ini and Step, respectively,
for the j-th design parameter in the optimization command file (see page 94).

In view of the sensitivity of the Discrete Armijo Gradient algorithm to the
scaling of the problem variables and the cost function values, the implemen-
tation of penalty and barrier functions may cause numerical problems if the
penalty is large compared to the unpenalized cost function value.

If box-constraints for the independent parameters are specified, then the
transformations (8.2) are used.

5.3.1 Keywords

For the Discrete Armijo Gradient algorithm, the command file (see page 94)
must only contain continuous parameters.

To invoke the algorithm, the Algorithm section of the GenOpt command
file must have the following form:

Algorithm{
Main = DiscreteArmijoGradient;
Alpha = Double; // 0 < Alpha < 1
Beta = Double; // 0 < Beta < 1
Gamma = Double; // 0 < Gamma
KO = Integer;

KStar = Integer;

LMax = Integer; // 0 <= LMax
Kappa = Integer; // 0 <= LMax
EpsilonM = Double; // O < EpsilonM
EpsilonX = Double; // O < EpsilonX

}

The entries are defined as follows:
Main The name of the main algorithm.

Alpha The variable o used in Step 1 and in Step 4 of Algorithm 5.3.2. A
typical value is aw = 1/2.

Beta The variable § used in approximating the gradient and doing the line
search. A typical value is 8 = 0.8.

Gamma The variable v used in Step 4 of Algorithm 5.3.1 to determine whether
the accuracy of the gradient approximation will be increased.

KO The variable ko that determines the initial accuracy of the gradient ap-
proximation.

Copyright (c) 1998-2003 34
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

KStar The variable £* used to initialize the line search.

LMax The variable l,,4, used in Step 3 of Algorithm 5.3.2 to determine
whether the line search needs to be reinitialized.

Kappa The variable « used in Step 3 of Algorithm 5.3.2 to determine whether
the line search needs to be reinitialized.

EpsilonM The variable €,, used in the determination criteria 8™ < €, in
Step 1 of Algorithm 5.3.1.

EpsilonX The variable ¢, used in the determination criteria ||A; h;|| < €, in
Step 5 of Algorithm 5.3.1.

Copyright (c) 1998-2003 35
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithms are population-based prob-
abilistic optimization algorithms first proposed by Kennedy and Eberhart [EK95,
KE95] to solve problem P. defined in (4.2) with possibly discontinuous cost
function f: R™ — R. In Section 5.4.2, we will present a PSO algorithm for
discrete independent variables to solve problem P, defined in (4.4), and in
Section 5.4.3 we will present a PSO algorithm for continuous and discrete in-
dependent variables to solve problem P4 defined in (4.6). To avoid ambiguous
notation, we always denote the dimension of the continuous independent vari-
able by n. € N and the dimension of the discrete independent variable by
ng € N.

PSO algorithms exploit a set of potential solutions to the optimization
problem. Each potential solution is called a particle, and the set of potential
solutions in each iteration step is called a population. PSO algorithms are global
optimization algorithms and do not require nor approximate gradients of the
cost function. The first population is typically initialized using a random num-
ber generator to spread the particles uniformly in a user-defined hypercube. A
particle update equation that is modeled on the social behavior of members of
bird flocks or fish schools determines the location of each particle in the next
generation.

A survey of PSO algorithms can be found in Eberhart and Shi [ESO01].
Laskari et. al. present a PSO algorithm for minimax problems [LPV02b] and
for integer programming [LPV02a]. In [PV02a], Parsopoulos and Vrahatis dis-
cuss the implementation of inequality and equality constraints to solve problem
P, defined in (4.3).

We first discuss the case where the independent variable is continuous, i.e.,
the case of problem P, defined in (4.2).

5.4.1 PSO for Continuous Variables

We will first present the initial version of the PSO algorithm which is the
easiest to understand.

In the initial version of the PSO algorithm [EK95, KE95], the update equa-
tion for the particle location is as follows: Let & € N denote the generation
number, let np € N denote the number of particles in each generation, let
x;(k) € R, i € {1,...,np}, denote the i-th particle of the k-th generation,
let v; (k) € R™ denote its velocity, let ¢1,co € Ry and let p1(k), p2(k) ~ U(0,1)
be uniformly distributed random numbers between 0 and 1. Then, the update
equation is, for all s € {1,...,np} and all k € N,

vilk +1) = vi(k) +c1pr(k) (pri(k) — i(k))
+c2 p2(k) (pg,i(k) — z(k)), (5.24a)

zi(k+1)

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

36

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

where v;(0) £ 0 and

pri(k) £ argmin f(z), (5.25a)
ez ()},
pgi(k) = argmin f(x). (5.25b)

wef{{z;()}r_o i

Thus, p;,;(k) is the location that for the i-th particle yields the lowest cost over
all generations, and p, ;(k) is the location of the best particle over all genera-
tions. The term c¢; p1(k) (pii(k) — z;(k)) is associated with cognition since it
takes into account the particle’s own experience, and the term co p2 (k) (pg,i (k) —
z;(k)) is associated with social interaction between the particles. In view of
this similarity, ¢y is called cognitive acceleration constant and cs is called social
acceleration constant.

a) Neighborhood Topology

The minimum in (5.25b) need not be taken over all points in the popu-
lation. The set of points over which the minimum is taken is defined by the
neighborhood topology. In PSO, the neighborhood topologies are usually de-
fined using the particle index, and not the particle location. We will use the
lbest, gbest, and the von Neumann neighborhood topology, which we will now
define.

In the lbest topology of size [€ N, with [> 1, the neighborhood of a particle
with index i € {1,...,np} consist of all particles whose index are in the set

N &2{i—1,. iy i+ 1, (5.26a)
where we assume that the indices wrap around, i.e., we replace —1 by np — 1,
replace —2 by np — 2, etc.

In the gbest topology, the neighborhood contains all points of the popula-
tion, i.e.,

N, 2{1,....np}, (5.26Db)
forallie {1,...,np}.

For the von Neumann topology, consider a 2-dimensional lattice, with the
lattice points enumerated as shown in Figure 5.4. We will use the von Neumann

topology of range 1, which is defined, for i,j € Z, as the set of points whose
indices belong to the set

Ny & {0 [k=il 4 1L-jl <1 klez}. (5.260)

ij) —
The gray points in Figure 5.4 are N, (”1 2)" For simplicity, we round in GenOpt
the user-specified number of particles n, € N to the next biggest integer np

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

37

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
| |
~ ~ -~ l ~
S 0,0 P 0,1 -
\\ -~ \\ -~
T T
|
-~ l ~
/ \
-= 10 1,1
\\ //
T
|
-~ l ~
/ \
-—= 2,0 2,1
\ /

Figure 5.4: Section of a 2-dimensional lattice of particles with \/np > 3.
The particles belonging to the von Neumann neighborhood N(Ul,2) with range 1,
defined in (5.26¢), are colored gray. Indicated by dashes are the particles that
are generated by wrapping the indices.

such that v/np € Nand np > np.2 Then, we can wrap the indices by replacing,
for k € Z, (0,k) by (v/np, k), (vVnp+1,k) by (1,k), and similarly by replacing
(k,0) by (k,+/np) and (k,/np + 1) by (k,1). Then, a particle with indices
(k,1), with 1 < k < /np and 1 <1 < y/np, has in the PSO algorithm the
index i = (k—1)y/np +1, and hence i € {1,...,np}.

Kennedy and Mendes [KMO02] show that greater connectivity of the parti-
cles speeds up convergence, but it does not tend to improve the population’s
ability to discover the global optimum. Best performance has been achieved
with the von Neumann topology, whereas neither the gbest nor the lbest topol-
ogy seemed especially good in comparison with other topologies.

Carlisle and Dozier [CDO01] achieve on unimodal and multi-modal functions
for the gbest topology better results than for the lbest topology.

b) Model PSO Algorithm

We will now present the Model PSO Algorithm that is implemented in
GenOpt.

2In principle, the lattice need not be a square, but we do not see any computational
disadvantage of selecting a square lattice.

Copyright (c) 1998-2003 38
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Algorithm 5.4.1 (Model PSO Algorithm for Continuous Variables)

Data: Constraint set X, as defined in (4.1),
but with finite lower and upper bound for each independent variable.
Initial iterate x¢ € X.
Number of particles np € N and number of generations ng € N.

Step O: Initialize k = 0, 20(0) = x¢ and the neighborhoods {N;}1'7; .
Step 1: Initialize {z;(0)};F, C X randomly distributed.
Step 2: For i € {1,...,np}, determine the local best particles

pi(k) £ argmin f(x) (5.27a)

we{zi(m)},_o

and the global best particle

pg.i(k) & arg min f(z). (5.27b)
w€{z;(m) | jENi}} o
Step 3: Update the particle location {z;(k + 1)}, C X.
Step 4: If k = ng, stop. Else, go to Step 2.
Step 5: Replace k£ by k + 1, and go to Step 1.

We will now discuss the different implementations of the Model PSO Algo-
rithm 5.4.1 in GenOpt.

c) Particle Update Equation

(i) Version with Inertia Weight Eberhart and Shi [SE98, SE99] in-
troduced an inertia weight w(k) which improves the performance of the original
PSO algorithm. In the version with inertia weight, the particle update equation
is, for all i € {1,...,np}, for k € N and z;(k) € R™, with v;(0) =0,

Ok +1) = wk)vi(k)+c1pi(k) (pri(k) — zi(k))
—+co pQ(k) (pgﬂ'(k) — Ii(k')), (528&)
vl(k+1) = sign(®!(k+ 1)) min{[5] (k + 1)], v}, },
je{l,...,n}, (5.28b)
wi(k+1) = xi(k) +oi(k+1), (5.28¢)
where
Ve 2N (Ul — 1), (5.28d)

with A € Ry, for all j € {1,...,n.}, and [,u € R are the lower and upper
bound of the independent variable. A common value is A = 1/2. In GenOpt,
if A <0, then no velocity clamping is used, and hence, v} (k 4+ 1) = v} (k + 1),
forall ke N,allie {1,...,np} and all j € {1,...,n.}.

Copyright (c) 1998-2003 39
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

We compute the inertia weight as

w(k) = wo — wo — w1), (5.28e)

7
where wy € R is the initial inertia weight, wy € R is the inertia weight for the
last generation, with 0 < w; < wg, and K € N is the maximum number of
generations. wo = 1.2 and w; = 0 can be considered as good choices [PV02D].

(ii) Version with Constriction Coefficient Clerc and Kennedy [CK02]
introduced a version with a constriction coefficient that reduces the veloc-
ity. In their Type 1”7 implementation, the particle update equation is, for
alli € {1,...,np}, for k € N and x;(k) € R", with v;(0) =0,

Uik +1) = x(k,) (vi(k) + c1 pr(k) (pri(k) — z:(K))
+ca p2(k) (pg.i(k) — zi(k))), (5.29a)
vl(k+1) = sign(@(k+ 1)) min{[o7 (k + 1)|, 0,0, },
ie{l,... n), (5.20b)
sk 1) = 2(k) + sk +1), (5.29¢)
where
vl BN (W - 1), (5.29d)

is as in (5.28d).
In (5.29a), x(k, ¢) is called constriction coefficient, defined as

27n, if ¢ > 4,
X(k, @) & {'“’V“"Q‘“‘" (5.29)
K

, otherwise,

where ¢ = ¢; +c2 and x € (0,1] control how fast the population collapses
into a point. If kK = 1, the space is thoroughly searched, which yields slower
convergence.

Equation (5.29) can be used with or without velocity clamping (5.29b). If
velocity clamping (5.29b) is used, Clerc and Kennedy use ¢ = 4.1, otherwise
they use ¢ = 4. In either case, they set ¢; = ¢a = ¢/2 and a population size of
np = 20.

Carlisle and Dozier [CDO01] recommend the settings np = 30, no velocity
clamping, k =1, ¢y = 2.8 and ¢ = 1.3.

Kennedy and Eberhart [KES01] report that using velocity clamping (5.29b)
and a constriction coefficient shows faster convergence for some test problems
compared to using an inertia weight, but the algorithm tends to get stuck in
local minima.

Copyright (c) 1998-2003 40
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

s(v)=1/(14+¢e7")

Y

4 -3 -2 -1 0 1 2 3 4
Figure 5.5: Sigmoid function.

5.4.2 PSO for Discrete Variables

Kennedy and Eberhart [KE97] introduced a binary version of the PSO al-
gorithm to solve problem P, defined in (4.4).

The binary PSO algorithm encodes the discrete independent variables in
a string of binary numbers and then operates with this binary string. For
some i € {1,...,n4}, let 2; € N be the component of a discrete independent
variable, and let ¢; € {0,1}™ be its binary representation (with m; € N4
bits), obtained using Gray encoding [PFTV93], and let m; ;(k) and 7, ;(k) be
the binary representation of p; ;(k) and pg i(k), respectively, where p; ;(k) and
pg.i(k) are defined in (5.27).
~ Then, for ¢ € {1,...,n4} and j € {1,...,m;} we initialize randomly
¥7(0) € {0,1}, and compute, for k € N,

Wk+1) = vl(k)+cipi(k) (nf,(k) — v (k)
+eg pa(k) (w2 (k) — ol (K))), (5.30a)
vl (k+1) = sign(@ (k+ 1)) min{|o7 (k + 1)|, Vmaz } (5.30D)

j o, i piy(k) > s(v] (k+ 1)),
vitkl) = {1, otherwise, (5-30c)
where

2 1 5.30d
s(v) = 1+e v (5.)

is the sigmoid function shown in Fig. 5.5 and p; (k) ~ U(0,1), for all i €
{1,...,nq} and for all j € {1,...,m;}.

In (5.30b), Umax € Ry is often set to 4 to prevent a saturation of the sigmoid
function, and ¢y, c2 € Ry are often such that ¢; + co = 4 (see [KESO01]).

Notice that s(v) — 0.5, as v — 0, and consequently the probability of
flipping a bit goes to 0.5. Thus, in the binary PSO, a small v,4, causes a
large exploration, whereas in the continuous PSO, a small v,,,, causes a small
exploration of the search space.

Copyright (c) 1998-2003 41
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Any of the above neighborhood topologies can be used, and Model Algo-
rithm 5.4.1 applies if we replace the constraint set X by the user-specified set
Xq C Z"4.

5.4.3 PSO for Continuous and Discrete Variables

For problem P.4 defined in (4.6), we treat the continuous independent
variables as in (5.28) or (5.29), and the discrete independent variables as
in (5.30). Any of the above neighborhood topologies can be used, and Model
Algorithm 5.4.1 applies if we define the constraint set X as in (4.5).

5.4.4 PSO on a Mesh

We now present a modification to the previously discussed PSO algorithms.
For evaluating the cost function, we will modify the continuous independent
variables such that they belong to a fixed mesh in R™. Since PSO algorithms
typically cluster points during the last iterations, this reduces in many cases
the number of simulation calls during the optimization. The modification is
done by replacing the cost function f: R™ xZ™ — R in Model Algorithm 5.4.1
as follows: Let zg £ (e,0,%d,0) € R™ x Z™ denote the initial iterate, let X,
be the feasible set for the continuous independent variables defined in (4.5b),
let r, s € N, with r > 1, be user-specified parameters, let

asl (5.31)

rr-S
and let the mesh be defined as
M(zc0,A,8) 2 {ze0+mAste; |i€{l,...,n.}, méeZ}, (5.32)

where s € R™¢ is equal to the value defined by the variable Step in GenOpt’s
command file (see page 94). Then, we replace f(-,-) by f: R™ x Z™® x R" x
R x R"™ — R, defined by

F@ora; 200, A, 8) 2 f(@e, a), (5.33)
where
Z. = argmin{||z. — z|| | 2 € M(z0, A, 5) N X, }. (5.34)

Thus, the continuous independent variables are replaced by the closest feasible
mesh point, and the discrete independent variables remain unchanged.

Good numerical results have been obtained by selecting s € R™ and r, s €
N such that about 50 to 100 mesh points are located along each coordinate
direction.

Copyright (c) 1998-2003 42
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.4.5 Population Size and Number of Generations

Parsopoulos and Vrahatis [PV02b] use for x € R™ a population size of
about 5n up to n = 15. For n ~ 10...20, they use np ~ 10n. They set
the number of generations to ng = 1000 up to n = 20 and to ng = 2000 for
n = 30.

Van den Bergh and Engelbrecht [vdBE0O1] recommend using more than 20
particles and 2000 to 5000 generations.

Kennedy and Eberhart [KESO01] use, for test cases with the lbest neigh-
borhood topology of size [= 2 and n = 2 and n = 30, a population size of
np = 20...30. They report that 10...50 particles usually work well. As a rule
of thumb, they recommend for the lbest neighborhood to select the neighbor-
hood size such that each neighborhood consists of 10...20% of the population.

5.4.6 Keywords

For the Particle Swarm algorithm, the command file (see page 94) can con-
tain continuous and discrete independent variables.

The different specifications for the Algorithm section of the GenOpt com-
mand file are as follows:

PSO algorithm with inertia weight:

Algorithm{
Main = PSOIW;
NeighborhoodTopology = gbest | lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration = Double; // 0 < CognitiveAcceleration
SocialAcceleration = Double; // 0 < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; // 0 < MaxVelocityDiscrete
InitialInertia = Double; // O < Initiallnertia
FinalInertia = Double; // O < FinalInertia

}

PSO algorithm with constriction coefficient:

Algorithm{
Main = PS0CC;
NeighborhoodTopology = gbest | 1lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

43

GenOpt
Generic Optimization Program
Version 2.0.0 ¢

Lawrence Berkeley National Laboratory

Building Technologies Department
Simulation Research Group

CognitiveAcceleration Double;
SocialAcceleration Double;
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete Double;
ConstrictionGain Double;

}

< CognitiveAcceleration
< SocialAcceleration

< MaxVelocityDiscrete
< ConstrictionGain <= 1

PSO algorithm with constriction coefficient and continuous independent vari-

ables restricted to a mesh:

Algorithm{
Main = PSOCCMesh;
NeighborhoodTopology = gbest | 1lbest | vonNeumann;
NeighborhoodSize = Integer; // O < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;
CognitiveAcceleration = Double; // 0 < CognitiveAcceleration
SocialAcceleration = Double; // O < SocialAcceleration
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double; // 0 < MaxVelocityDiscrete
ConstrictionGain = Double; // 0 < ConstrictionGain <= 1
MeshSizeDivider = Integer; // 1 < MeshSizeDivider
InitialMeshSizeExponent = Integer; // O <= InitialMeshSizeExponent
}

The entries that are common to all implementations are defined as follows:

Main The name of the main algorithm. The implementation PSOIW uses the
location update equation (5.28) for the continuous independent variables,
and the implementation PSOCC uses (5.29) for the continuous independent
variables. All implementations use (5.30) for the discrete independent

variables.

NeighborhoodTopology This entry defines what neighborhood topology is

being used.

NeighborhoodSize This entry is equal to [in (5.26). For the gbest neigh-
borhood topology, the value of NeighborhoodSize will be ignored.

NumberOfParticle This is equal to the variable np € N.

NumberOfGeneration Thisis equal to the variable ng € Nin Algorithm 5.4.1.

Seed This value is used to initialize the random number generator.

CognitiveAcceleration This is equal to the variable ¢; € R..

SocialAcceleration This is equal to the variable co € Ry.

MaxVelocityGainContinuous This is equal to the variable A € R in (5.28d)
and in (5.29d). If MaxVelocityGainContinuous is set to zero or to a
negative value, then no velocity clamping is used, and hence, v} (k+1) =
o/ (k4+1),forall ke N, allie {1,...,np} and all j € {1,...,n.}.

Copyright (c) 1998-2003

44

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

MaxVelocityDiscrete This is equal to the variable vy,q, € R4 in (5.30b).

For the PSOIW implementation, following additional entries must be specified:
InitialInertia This is equal to wy € Ry in (5.28e).

FinalInertia This is equal to w; € Ry in (5.28e).

For the PSOCC implementation, following additional entries must be specified:
ConstrictionGain This is equal to x € (0, 1] in (5.29e).

Notice that for discrete independent variables, the entries of InitialInertia,
FinalInertia, and ConstrictionGain are ignored.

For the PSOCCMesh implementation, following additional entries must be spec-
ified:

MeshSizeDivider This is equal to r € N, with r > 1, used in (5.31).

InitialMeshSizeExponent This is equal to s € N used in (5.31).

Copyright (c) 1998-2003 45
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.5 Hybrid Generalized Pattern Search Algorithm
with Particle Swarm Optimization Algorithm

This hybrid global optimization algorithm can be used to solve problem P,
defined in (4.2) and problem P.q defined in (4.6). Problem P, defined in (4.3)
and problem P4, defined in (4.7) can be solved if the constraint functions g(-)
are implemented as described in Section 8.2.

This hybrid global optimization algorithm starts by doing a Particle Swarm
Optimization (PSO) on a mesh, as described in Section 5.4.4, for a user-
specified number of generations ng € N. Afterwards, it initializes the Hooke-
Jeeves Generalized Pattern Search (GPS) algorithm, described in Section 5.2.2,
using the continuous independent variables of the particle with the lowest cost
function value. If the optimization problem has continuous and discrete in-
dependent variables, then the discrete independent variables will for the GPS
algorithm be fixed at the value of the particle with the lowest cost function
value.

We will now explain the hybrid algorithm for the case where all independent
variables are continuous, and then for the case with mixed continuous and
discrete independent variables. Throughout this section, we will denote the
dimension of the continuous independent variables by n. € N and the dimension
of the discrete independent variables by ng € N.

5.5.1 Hybrid Algorithm for Continuous Variables

We will now discuss the hybrid algorithm to solve problem P, defined
in (4.2). However, we require the constraint set X C R™ defined in (4.1) to
have finite lower and upper bounds /%, u® € R, for all i € {1,...,n.}.

First, we run the PSO algorithm 5.4.1, with user-specified initial iterate
o € X for a user-specified number of generations ng € N on the mesh defined
in (5.32). Afterwards, we run the GPS algorithm 5.1.14 where the initial iterate
xo is equal to the location of the particle with the lowest cost function value,
ie.,

T2 p 2 arg min f(z), (5.35)
ze{x;(k) | je{l,....np}, ke{l,...,nc}}
where np € N denotes the number of particles and z;(k), 7 € {1,...,np},

ke {l,...,ng} are as in Algorithm 5.4.1.

Since the PSO algorithm terminates after a finite number of iterations, all
convergence results of the GPS algorithm hold. In particular, if the cost func-
tion is once continuously differentiable, then the hybrid algorithm constructs
accumulation points that are feasible stationary points of problem (4.2) (see
Theorem 5.1.24).

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

46

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Since the PSO algorithm is a global optimization algorithm, the hybrid al-
gorithm is, compared to the Hooke-Jeeves algorithm, less likely to be attracted
by a local minimum that is not global. Thus, the hybrid algorithm combines
the global features of the PSO algorithm with the provable convergence prop-
erties of the GPS algorithm.

If the cost function is discontinuous, then the hybrid algorithm is, compared
to the Hooke-Jeeves algorithm, less likely to jam at a discontinuity far from a
solution.

5.5.2 Hybrid Algorithm for Continuous and Discrete
Variables

For problem P4 defined in (4.6) with continuous and discrete independent
variables, we run the PSO algorithm 5.4.1, with user-specified initial iterate
20 € X £ X, x Xy C R% x Z™ for a user-specified number of generations
ng € N, where the continuous independent variables are restricted to the mesh
defined in (5.32). We require the constraint set X, C R™ defined in (4.5b) to
have finite lower and upper bounds /%, u* € R, for all i € {1,...,n.}.

Afterwards, we run the GPS algorithm 5.1.14, where the initial iterate
ro € X, is equal to p. € X, which we define as the continuous independent
variables of the particle with the lowest cost function value, i.e., p £ (pe,pq) €
X x X, where p is defined in (5.35). In the GPS algorithm, we fix the discrete
components at pg € Xq4 for all iterations. Thus, we use the GPS algorithm to
refine the continuous components of the independent variables, and fix the
discrete components of the independent variables.

5.5.3 Keywords

For this algorithm, the command file (see page 94) can contain continuous
and discrete independent variables. It must contain at least one continuous
parameter.

The specifications of the Algorithm section of the GenOpt command file
is as follows:

Note that the first entries are as for the PSO algorithm on page 44 and the
last entries are as for GPS implementation of the Hooke-Jeeves algorithm on
page 30.

Algorithm{
Main = GPSPSOCCHJ;
NeighborhoodTopology = gbest | 1lbest | vonNeumann;
NeighborhoodSize = Integer; // 0 < NeighborhoodSize
NumberOfParticle = Integer;
NumberOfGeneration = Integer;
Seed = Integer;

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

47

GenOpt
Generic Optimization Program
Version 2.0.0 ¢

Lawrence Berkeley National Laboratory
Building Technologies Department
Simulation Research Group

CognitiveAcceleration = Double;
SocialAcceleration = Double;
MaxVelocityGainContinuous = Double;
MaxVelocityDiscrete = Double;
ConstrictionGain = Double;
MeshSizeDivider = Integer;
InitialMeshSizeExponent = Integer;
MeshSizeExponentIncrement = Integer;
NumberOfStepReduction = Integer;

The entries are defined as follows:

Main The name of the main algorithm.

//
//

//
//
//
//
//
/7

o
A

O O O~ OO

AN A

A

AN N A

AN

CognitiveAcceleration
SocialAcceleration

MaxVelocityDiscrete
ConstrictionGain <= 1
MeshSizeDivider

= InitialMeshSizeExponent

MeshSizeExponentIncrement
NumberOfStepReduction

NeighborhoodTopology This entry defines what neighborhood topology is

being used.

NeighborhoodSize This entry is equal to [in (5.26). For the gbest neigh-
borhood topology, the value of NeighborhoodSize will be ignored.

NumberOfParticle This is equal to the variable np € N.

NumberOfGeneration This is equal to the variable ng € Nin Algorithm 5.4.1.

Seed This value is used to initialize the random number generator.

CognitiveAcceleration This is equal to the variable ¢; € Ry used by the

PSO algorithm.

SocialAcceleration This is equal to the variable co € R4 used by the PSO

algorithm.

MaxVelocityGainContinuous This is equal to the variable A € R in (5.28d)
and in (5.29d). If MaxVelocityGainContinuous is set to zero or to a
negative value, then no velocity clamping is used, and hence, v} (k+1) =
o/ (k+1),forallkeN,allie {1,...,np} and all j € {1,...,n.}.

MaxVelocityDiscrete This is equal to the variable v,,q, € Ry in (5.30b).

ConstrictionGain This is equal to x € (0, 1] in (5.29e).

MeshSizeDivider This is equal to » € N, with » > 1, used by the PSO
algorithm in (5.31) and used by the GPS algorithm to compute A =
1/r%F (see equation (5.6)). A common value is r = 2.

InitialMeshSizeExponent This is equal to s € N used by the PSO algo-
rithm in (5.31) and used by the GPS algorithm in (5.6). A common

value is so = 0.

MeshSizeExponentIncrement The value for ¢, € N (fixed for all £ € N)
used by the GPS algorithm in (5.6). A common value is 5 = 1.

NumberOfStepReduction The maximum number of step reductions before

the GPS algorithm stops. Thus, if we use the notation m £ Number0OfStepReduction,

then we have for the last iterations Ay = 1/r*o*t™mt A common value

ism=4.

Copyright (c) 1998-2003

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

48

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.6 Hooke-Jeeves

This algorithm is implemented for compatibility with previous GenOpt ver-
sions and is no longer supported. We recommend using the implementation of
the Hooke-Jeeves algorithm described in Section 5.2.2 on page 29.

The Hooke-Jeeves pattern search algorithm [HJ61] is a derivative free op-
timization algorithm that can be used to solve problem P. defined in (4.2) for
n > 1. Problem P, defined in (4.3) can be solved by implementing constraints
on the dependent parameters as described in Section 8.

For problem (4.2), if the cost function is continuously differentiable and
has bounded level sets, then the Hooke-Jeeves algorithm converges to a point
x* € R™ that satisfies |V f(z*)|| = 0 (see [Tor97, AD03]).

Hooke and Jeeves found empirically that the number of function evaluations
increases only linearly with the number of independent variables [HJ61].

5.6.1 Modifications to the Original Algorithm

Now, we explain modifications to the original algorithm of [HJ61] which
are implemented in GenOpt.

Smith [Smi69] reports that applying the same step size for each variable
causes some parameters to be essentially ignored during much of the search
process. Therefore, Smith proposes to initialize the step size for each variable
by

Ax' = 8|z}, (5.36)

where § > 0 is a fraction of the initial step length and xzy € R" is the ini-
tial iterate. In GenOpt’s implementation, Ax? is set equal to the value of the
parameter Step, which is specified in the command file (see page 94). This
allows taking the scaling of the components of the independent parameter into
account.

In [HJ61], the search of the exploration move is always done first in the
positive, then in the negative direction along the coordinate vectors, e; € R™,
i € {1,...,n}. Bell and Pike [BP66] proposed searching first in the direction
that led in the last exploration move to a reduction of the cost function. This
increases the probability to reduce the cost function already by the first explo-
ration move, thus allows skipping the second trial.

De Vogelaere [DV68] proposed changing the algorithm such that the max-
imum number of function evaluations cannot be exceeded, which can be the

case in the original implementation.

All three modifications are implemented.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

49

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

To implement the box constraints of problem P, and Py, defined in (4.2)
and (4.3), respectively, we assign f*(z;¢€) = oo for all x ¢ X where X is defined
in (4.1).

5.6.2 Algorithm Description

Hooke and Jeeves divide the algorithm in an initial exploration (I), a basic
iteration (II), and a step size reduction (III). (I) and (II) make use of so-called
exploratory moves to get local information about the direction in which the
cost function decreases.

The exploratory moves are executed as follows (see Fig. 5.6):
Let Az’ € R be the step size of the i-th independent parameter, and e; € R"
the unit vector along the i-th coordinate direction. Assume we are given a base
point, called the resulting base point z,. and its function value, say f, = f(z;).
Then we make a sequence of orthogonal exploratory moves. To do so, we set
1 =0 and assign

T, — xp + Azl ey (5.37)

Provided that z,. is feasible, that is x,, € X, we evaluate the cost function
and assign f, — f(z,). If f, < fp, then the new point becomes the resulting
base point, and we assign

fp = fr (5.38)

Otherwise, we assign

Azt — —Az’, (5.39)
T, — p+2Ax%e, (5.40)

evaluate f(x,) and assign f, <« f(z,). If this exploration reduced the cost
function, we apply (5.38). Otherwise, we reset the resulting base point by
assigning

Ty — zp — Azt e (5.41)

so that the resulting base point has not been altered by the exploration in
the direction along e;. Therefore, if any of the exploration moves have been
successful, we have a new resulting base point z, and a new function value
fp = f(z,). Using the (probably new) resulting base point z, the same pro-
cedure is repeated along the next coordinate direction (i.e., along e;41,) until
an exploration along all coordinate vectors e;, i € {1,...,n} has been done.
Note that according to (5.40) Ax® has in the next exploration move along e;
the sign that led in the last exploration to a reduction of the cost function (if
any reduction was achieved).

At the end of the n exploratory moves, we have a new resulting base point
x, if and only if at least one of the exploratory moves led to a reduction of the

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

50

GenOpt

Generic Optimization Program

Version 2.0.0 ¢

Lawrence Berkeley National Laboratory

Building Technologies Department

Simulation Research Group

Given x, fp=f(xr)

i=0,n=dim(x)

»
Ll

Check first direction:
X < X+ DX g
f o f(x)

Failure, check other direction:
AX « —AX
X « X+ 20X e
f, - f(x)
4 T fr < fp 3
A
Success: Failure, reset coordinate:
fo - X - X -OXe

Figure 5.6: Flow chart of the exploration move, E(x,, fp).

Copyright (c) 1998-2003

The Regents of the University of California (through Lawrence Berkeley National Laboratory),

subject to receipt of any required approvals from U.S. Department of Energy.

o1

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Evaluate function
St?rt .y atinitia basepoint: ’p@
U=V f o f(x)

Assign base point: Explore:
. —»
@ f—foX X {x.,f} Ex,f)
()

T
Set base point: Pattern move: ‘

fof: +(x— Explore:
c P’ e X =X (X, Xp) > {x, fp} - E(x, fp)
X, X X =X f — f(x)

Reduce step size:
AX « CAX; —P@
F

me— m+l

Figure 5.7: Flow chart of Hooke-Jeeves algorithm.

cost function.

(I) Initial Iteration

In the initial iteration, we have a current base point, x.. We assign x, «— x,
and make the exploration moves around x,. If at least one of the exploration
move leads to a reduction of the cost function, then we go to the basic iteration
(IT), otherwise we reduce the step size according to (III).

(IT) Basic Iteration
We update the function value of the base point by assigning

fe — Jp, (5.42)

and assign to the previous base point x,, the value of the current base point .
and to the current base point x. the value of the resulting base point ., i.e.,

Tp — T, (5.43)
Te — Ty (5.44)

Then, we make a pattern move, given by
Ty — Ty + (T — xp). (5.45)

Now, we assign f, < f(z,). Regardless of whether the pattern move leads to
a reduction of the cost function, we do exploratory moves around z,. If any

Copyright (c) 1998-2003 52
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

of the exploratory moves is successful, then x, and consequently f, = f(x,)
are altered. Now, we check whether f, > f,. If so, the pattern move might
no longer be appropriate and we do an initial step (I). Otherwise, the pattern
move and the exploration steps lead to an improvement and we do a basic
iteration again (II).

(IIT) Step Size Reduction
The relative step size for the exploration moves is reduced according to

Az «— cAx, (5.46)

where 0 < ¢ < 1 is the constant step reduction factor. A common value for ¢ is
0.5. z. is considered as the minimum point and the algorithm stops if the step
size has been reduced M4, times. Mynqq 1S a user input.

Further discussion of this algorithm can be found in [HJ61, Wil64, Avr76,
Wal75].
5.6.3 Keywords

For the Hooke-Jeeves algorithm, the command file (see page 94) must only

contain continuous parameters.

To invoke the Hooke-Jeeves algorithm, the Algorithm section of the GenOpt
command file must have the following form:

Algorithm{
Main = HookelJeeves;
StepReduction = Double; // 0 < StepReduction
NumberOfStepReduction = Integer; // 0 < NumberOfStepReduction
X

The entries are defined as follows:
Main The name of the main algorithm.

StepReduction The step reduction factor, ¢ in (5.46), where 0 < ¢ < 1. A
common value is ¢ = 0.5.

NumberOfStepReduction This integer specifies how many times a step re-
duction has to be done before a point is considered as being a minimum
point. NumberOfStepReduction is equal to the parameter m,q; in Fig.
5.7. A common value is Mypqe = 2, but my,q, depends on the step size
and the required accuracy.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

93

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.7 Simplex Algorithm of Nelder and Mead with
the Extension of O’Neill

The Simplex algorithm of Nelder and Mead is a derivative free optimization
algorithm. It can be used to seek a solution of problem P, defined in (4.2) and
problem P, defined in (4.3), with constraints on the dependent parameters
implemented as described in Section 8. The number of independent parame-
ters n must be larger than 1.

The Simplex algorithm constructs an n-dimensional simplex in the space
that is spanned by the independent parameters. At each of the (n+ 1) vertices
of the simplex, the value of the cost function is evaluated. In each iteration
step, the point with the highest value of the cost function is replaced by another
point. The algorithm consists of three main operations: (a) point reflection,
(b) contraction of the simplex and (c) expansion of the simplex.

It is known that the Simplex algorithm can fail to converge to a station-
ary point, even if the cost function is smooth. For an excellent discussion,
see [Wri96] or [McK98, LRWW98]. The Simplex algorithm fails when the sim-
plex collapses into a subspace of R™, or becomes elongated and distorted in
shape. Despite its bad convergence properties, the Simplex algorithm often
successfully locates a greatly improved solution with many fewer function eval-
uations than its competitors [Wri96].

In [McK98], McKinnon presents a strictly convex function with three con-
tinuous derivatives and a set of initial iterates for which the Simplex algorithm
converges to a non-stationary point. In this example, the vertices tend to a
straight line which is orthogonal to the steepest descent direction.

We will now explain the different steps of the Simplex algorithm.

5.7.1 Main Operations

The notation defined below is used in describing the main operations. The
operations are illustrated in Fig. 5.8 where for simplicity a two-dimensional
simplex is illustrated.

We now introduce some notation and definitions.

1. We will denote by I = {1, ..., n+ 1} the set of all vertex indices.

2. We will denote by [€ I the smallest index in I such that

I = argmin f(x;). (5.47a)
i€l

Hence, f(x;) < f(z;), for alli € L.
3. We will denote by h € I the smallest index in I such that

h = arg max f(z;). (5.47b)
i€l

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

54

GenOpt

Generic Optimization Program

Version 2.0.0 ¢

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

i x2 i x2
* %
X
*
X
Xh Xh
x1 al
(a) Reflection. (b) Expansion.
I x2 I x2
* *
X X
Xh Xh
x1 x1
(c) Partial inside contraction. (d) Partial outside contraction.
i x2
X
X *
Xl* 2
Xh

(e) Total contraction.

Figure 5.8: Simplex operations.

Copyright (c) 1998-2003

95

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Hence, f(xp) > f(x;), for all i € L.

4. Let x;, for i € I, denote the simplex vertices, and let h be as in (5.47b).
We will denote by z. € R™ the centroid of the simplex, defined as

1 n+1
T, 2 - Z z; (5.47¢c)
=1
i#h
Next, we introduce the three main operations.

Reflection Let h € Ibe asin (5.47b) and let x. be as in (5.47¢). The reflection
of xp, € R™ to a point denoted as z* € R™ is defined as

" & (14 a)x. — azp, (5.48a)

where o € R, with a > 0, is called the reflection coefficient.

Expansion of the simplex Let z* € R" be as in (5.48a) and z. be as
in (5.47c). The expansion of * € R™ to a point denoted as z** € R" is
defined as

T T N) P (5.48Db)

where v € R, with v > 1, is called the expansion coefficient.

Contraction of the simplex Let h € Ibeasin (5.47b) and z. be as in (5.47c).
The contraction of x;, € R™ to a point denoted as x** € R™ is defined as

& By, + (1 - B)z, (5.48¢)

where 8 € R, with 0 < 8 < 1, is called the contraction coefficient.

5.7.2 Basic Algorithm

In this section, we describe the basic Nelder and Mead algorithm [NMG65].
The extension of O’Neill and the modified restart criterion are discussed later.
The algorithm is as follows:

1. Initialization: Given an initial iterate x; € R", a scalar ¢, with ¢ =1 in
the initialization, a vector s € R™ with user-specified step sizes for each
independent parameter, and the set of unit coordinate vectors {e;}?_;,
construct an initial simplex with vertices, for i € {1,...,n},

Tip1 =1 +cs'e;. (5.49)
Compute f(z;), for i € L.
2. Reflection: Reflect the worst point, that is, compute z* as in (5.48a).

3. Test whether we got the best point: If f(z*) < f(z;), expand the simplex
using (5.48b) since further improvement in this direction is likely. If
f(@**) < f(x;), then xp, is replaced by x**, otherwise xy, is replaced by
x*, and the procedure is restarted from 2.

Copyright (c) 1998-2003 56
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

1.8694

r1.8693

h1.8692

r1.8691

fifimo
i TN
W TN
L A]

r 1.8690

.8546 1.8548 1.8550 1.8552 1.8554 1.8556 1.8558 1.8560 1.8562 1.8564
Xl

Figure 5.9: Sequence of iterates generated by the Simplex algorithm.

4. If it turned out under 3 that f(x*) > f(2;), then we check if the new
point z* is the worst of all points: If f(z*) > f(z;), for all ¢ € I, with
i # h, we contract the simplex (see 5); otherwise we replace zj by z*
and go to 2.

5. For the contraction, we first check if we should try a partial outside
contraction or a partial inside contraction: If f(z*) > f(xp), then we
try a partial inside contraction. To do so, we leave our indices as is and
apply (5.48c). Otherwise, we try a partial outside contraction. This is
done by replacing x5, by z* and applying (5.48c). After the partial inside
or the partial outside contraction, we continue at 6.

6. If f(z**) > f(x1,)3, we do a total contraction of the simplex by replacing
x; — (x; +x1)/2, for all i € I. Otherwise, we replace xj; by **. In both
cases, we continue from 2.

3Nelder and Mead [NM65] use the strict inequality f(z**) > f(z1). However, if
the user writes the cost function value with only a few representative digits to a text
file, then the function looks like a step function if slow convergence is achieved. In
such cases, f(z**) might sometimes be equal to f(zp). Experimentally, it has been
shown advantageous to perform a total contraction rather than continuing with a
reflection. Therefore, the strict inequality has been changed to a weak inequality.

XZ

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

o7

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Fig. 5.9 shows a contour plot of a cost function f: R"” — R with a se-
quence of iterates generated by the Simplex algorithm. The sequence starts
with constructing an initial simplex x1, w3, 3. 1 has the highest function
value and is therefore reflected, which generates x4. x4 is the best point in
the set {1,292, x35,24}. Thus, it is further expanded, which generates x5. x2,
xs and x5 now span the new simplex. In this simplex, x3 is the vertex with
the highest function value and hence goes over to x4 and further to x7. The
process of reflection and expansion is continued again two times, which leads to
the simplex spanned by z7, 9 and x11. &7 goes over to x12 which turns out to
be the worst point. Hence, we do a partial inside contraction, which generates
r13. 13 is better than x7 so we use the simplex spanned by xg, x11 and 13
for the next reflection. The last steps of the optimization are for clarity not
shown.

5.7.3 Stopping Criteria

The first criterion is a test of the variance of the function values at the
vertices of the simplex

1 [) 1 nt1 2
- T - X < €7, .
S (@) - <Zf()) ? (5.50)

=1

then the original implementation of the algorithm stops. Nelder and Mead
have chosen this stopping criterion based on the statistical problem of finding
the minimum of a sum of squares surface. In this problem, the curvature
near the minimum yields information about the unknown parameters. A slight
curvature indicates a high sampling variance of the estimate. Nelder and Mead
argue that in such cases, there is no reason for finding the minimum point
with high accuracy. However, if the curvature is marked, then the sampling
variance is low and a higher accuracy in determining the optimal parameter
set is desirable.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

o8

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

5.7.4 O’Neill’s Modification

O’Neill modified the termination criterion by adding a further condition [O’N71].

He checks whether any orthogonal step, each starting from the best vertex of
the current simplex, leads to a further improvement of the cost function. He
therefore sets ¢ = 0.001 and tests if

fla) < f(=) (5.51a)
for all = defined by
r2a +cste, ie{l,...,n}, (5.51b)

where x; denotes the best known point, and s and e; are as in (5.49).

5.7.5 Modification of Stopping Criteria

In GenOpt, (5.51) has been modified. It has been observed that users
sometimes write the cost function value with only few representative digits to
the output file. In such cases, (5.51a) is not satisfied if the write statement
in the simulation program truncates digits so that the difference f(x;) — f(z),
where f(-) denotes the value that is read from the simulation output file, is
zero. To overcome this numerical problem, (5.51b) has been modified to

=z +exp(j)cste, ie{l,...,n} (5.51c¢)

where for each direction 7 € {1,...,n}, the counter j € N is set to zero for the
first trial and increased by one as long as f(x;) = f(x).

If (5.51a) fails for any direction, then = computed by (5.51c) is the new
starting point and a new simplex with side lengths (cs?), i € {1,...,n}, is
constructed. The point = that failed (5.51a) is then used as the initial point x;
in (5.49).

Numerical experiments showed that during slow convergence the algorithm
was restarted too frequently.

Fig. 5.10(a) shows a sequence of iterates where the algorithm was restarted
too frequently. The iterates in the figure are part of the iteration sequence near
the minimum of the test function shown in Fig. 5.10(b). The algorithm gets
close to the minimum with appropriately large steps. The last of these steps
can be seen at the right of the figure. After this step, the stopping criterion
(5.50) was satisfied which led to a restart check, followed by a new construction
of the simplex. From there on, the convergence was very slow due to the small
step size. After each step, the stopping criterion was satisfied again which led
to a new test of the optimality condition (5.51a), followed by a reconstruction
of the simplex. This check is very costly in terms of function evaluations and,
furthermore, the restart with a new simplex does not allow increasing the step
size, though we are heading locally in the right direction.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

99

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program
Version 2.0.0 8

Building Technologies Department
Simulation Research Group

1.86935 ***
e
1.86910 -
1.86885 -
.
1.86860 -
X2 %o
86835 N
1.86835 . \\QQ\\Q\;:\\
vor \\\\
. \
1.86810 - AN
1.86785 -
186760 L L L L L L J

1855 1.856 1.857 1.858 11.859 1.860 1.861 1.862
X

(a) Sequence of iterates in the neighborhood of
the minimum.

Figure 5.10: Nelder Mead trajectory.

O’Neill’s modification prevents both excessive checking of the optimality
condition as well as excessive reconstruction of the initial simplex. This is
done by checking for convergence only after a predetermined number of steps
(e.g., after five iterations). However, the performance of the algorithm depends
strongly on this number. As an extreme case, a few test runs were done where
convergence was checked after each step as in Fig. 5.10(a). It turned out that
in some cases no convergence was reached within a moderate number of func-
tion evaluations if € in (5.50) is chosen too large, e.g., € = 1073 (see Tab. 5.1).

To make the algorithm more robust, it is modified based on the following
arguments:

1. If the simplex is moving in the same direction in the last two steps, then
the search is not interrupted by checking for optimality since we are
making steady progress in the moving direction.

2. If we do not have a partial inside or total contraction immediately beyond
us, then it is likely that the minimum lies in the direction currently being
explored. Hence, we do not interrupt the search with a restart.

These considerations have led to two criteria that both have to be satisfied
to permit the convergence check according to (5.50), which might be followed
by a check for optimality.

First, it is checked if we have done a partial inside contraction or a total
contraction. If so, we check if the direction of the latest two steps in which

N

N\
N

\\\\

\\
W
W

\\
NN
NN

N

N
N

q
\
W

W

N

77

\

N

(b) 2-dimensional test function “2D17.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

60

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

the simplex is moving has changed by an angle of at least (7/2). To do so, we
introduce the center of the simplex, defined by

1 n+1
A .
Tm = le, (5.52)
i=1
where z;, i € {1,...,n}, are the simplex vertices. We also introduce the

normalized direction of the simplex between two steps,

Tm,k — Tm,k—1

dy £

s , 5.53
[E— (5:53)

where k& € N is the current iteration number.

We determine how much the simplex has changed its direction dj, between
two steps by computing the inner product (dy_1,dy). The inner product is
equal to the cosine of the angle di_; and dj. If

cos ¢y = (dk—1, di) <0, (5.54)

then the moving direction of the simplex has changed by at least 7/2. Hence,
the simplex has changed the exploration direction. Therefore, a minimum
might be achieved and we need to test the variance of the vertices (5.50), pos-
sibly followed by a test of (5.51a).

Besides the above modification, a further modification was tested: In some
cases, a reconstruction of the simplex after a failed check (5.51a) yields to slow
convergence. Therefore, the algorithm was modified so that it continues at
point 2 on page 56 without reconstructing the simplex after failing the test
(5.51a). However, reconstructing the simplex led in most of the benchmark
tests to faster convergence. Therefore, this modification is no longer used in
the algorithm.

5.7.6 Benchmark Tests

Tab. 5.1 shows the number of function evaluations and Fig. 5.11 shows the
relative number of function evaluations compared to the original implementa-
tion for several test cases. The different functions and the parameter settings
are given in the Appendix. The only numerical parameter that was changed
for the different optimizations is the accuracy, €.

It turned out that modifying the stopping criterion is effective in most
cases, particularly if a new simplex is constructed after the check (5.51a) failed.
Therefore, the following two versions of the simplex algorithm are implemented
in GenOpt:

1. The base algorithm of Nelder and Mead, including the extension of
O’Neill. After failing (5.51a), the simplex is always reconstructed with
the new step size.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

61

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 g Simulation Research Group
Accuracy
e=10"3 e=10""°
Test Rosen-| 2D1 Quad | Quad | Rosen-| 2D1 Quad | Quad
function brock with I | with | brock with I | with
ma- Q ma- ma- Q ma-
trix trix trix trix
Original, 137 120 3061 1075 139 109 1066 1165
with recon-
struction
Original, 136 110 1436 1356 139 109 1433 1253
no recon-
struction
Modified, 145 112 1296 1015 152 111 1060 1185
with recon-
struction
Modified, 155 120 1371 1347 152 109 1359 1312
no recon-
struction

Table 5.1: Comparison of the number of function evaluations for different
implementations of the simplex algorithm. See Appendiz for the definition of
the function.

Copyright (c) 1998-2003 62
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
T 18

=2

S 16

e €=10° | £=10"

B =14 - -
8o - W Original, but no reconstruction
g 512 M 0 Moqmed stopping criterion,

o & s ~ - with reconstruction

g S 10- | | | @ Modified stopping criterion,
= no reconstruction

S c

® x 0.8 I M

T3

5 50.6- : :

SR

58040l . oh

55 ¥ o ox X % o x x

52 S S8 ® SN R B

S E £ £ E 2 E E

£ g -—o8% = o

<) s c 2 = <

> =z = %

B 83 8 3

T = > = >

x o 3 o3

Figure 5.11: Comparison of the benchmark tests.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

63

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

2. The base algorithm of Nelder and Mead, including the extension of
O’Neill, but with the modified stopping criterion as explained above.
That is, the simplex is only reconstructed if its moving direction changed,
and if we have an inside or total construction beyond us.

5.7.7 Keywords
For the Simplex algorithm, the command file (see page 94) must only con-

tain continuous parameters.

To invoke the Simplex algorithm, the Algorithm section of the GenOpt
command file must have following form:

Algorithm{
Main = NelderMeadONeill;
Accuracy = Double; // 0 < Accuracy
StepSizeFactor = Double; // 0 < StepSizeFactor
BlockRestartCheck = Integer; // O <= BlockRestartCheck

ModifyStoppingCriterion = Boolean;

}

The key words have following meaning:
Main The name of the main algorithm.

Accuracy The accuracy that has to be reached before the optimality condi-
tion is checked. Accuracy is defined as equal to € of (5.50), page 58.

StepSizeFactor A factor that multiplies the step size of each parameter for
(a) testing the optimality condition and (b) reconstructing the simplex.
StepSizeFactor is equal to ¢ in (5.49) and (5.51c).

BlockRestartCheck Number that indicates for how many main iterations
the restart criterion is not checked. If zero, restart might be checked
after each main iteration.

ModifyStoppingCriterion Flag indicating whether the stopping criterion
should be modified. If true, then the optimality check (5.50) is done
only if both of the following conditions are satisfied: (a) in the last step,
either a partial inside contraction or total contraction was done, and (b)
the moving direction of the simplex has changed by an angle ¢ of at
least (m/2), where ¢y, is computed using (5.54).

Copyright (c) 1998-2003 64
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
X
f(X) A | i -
X X X X
0,i 1, 2,i 3
i0{0,1,2 ..}
o) h o K
X =X

0,(i+1) Xl,(i+1) X2,(i+1) X3,(i+l)

Figure 6.1: Interval diviston.

6 Algorithms for
One-Dimensional Optimization

6.1 Interval Division Algorithms

Interval division algorithm can be used to minimize a function f: R — R,
(i.e., the function depends on one independent parameter only,) over a user-
specified interval. The algorithms do not require derivatives and they require
only one function evaluation per interval division, except for the initialization.

First, we explain a master algorithm for the interval division algorithms.
The master algorithm is used to implement two commonly used interval division
algorithms: The Golden Section search and the Fibonacci Division.

6.1.1 General Interval Division

We now describe the ideas behind the interval division methods. For given
rg,x3 € R, with 2o < 3, let X £ [x0, z3]. Suppose we want to minimize f(-)
on X, and suppose that f: R — R has a unique minimizer z* € X. For some
s € (0,1), let

x0+8($3 —fvo), (6.1)
r1+ S (5C3 — xl). (6.2)

T

> 1>

T2

If f(z1) < f(xz2), then a* € [xg, x2]. Hence, we can eliminate the interval
(22, 3] and restrict our search to [rg, x2|. Similarly, if f(z1) > f(x2), then
x* € [r1, x3] and we can eliminate [zg, #1). Thus, we reduced the initial inter-

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

65

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

val to a new interval that contains the minimizer, z*.

Let i € N be the iteration number. We want to nest the sequence of
intervals

[To,(i4+1)> T3,(i+1)] C [To,i, 3,i], i€{0,1,2,...}, (6.3)

such that we have to evaluate f(-) in each step at one new point only. To do so,
we assign the new bounds of the interval such that either [xq 41y, 3,3i41)] =
[T0,i, T2,4], OF [Zo,(i41)s 23,3i4+1)] = [T1,i, 3,i], depending on which interval has
to be eliminated. By doing so, we have to evaluate only one new point in
the interval. It remains to decide where to locate the new point. The Golden
Section and Fibonacci Division differ in this decision.

6.1.2 Golden Section Interval Division

Suppose we have three points x¢p < 1 < x3 in X C R such that for some
g € (0,1), to be determined latter,

lzo — 21
— =q. 6.4
|zg — 3] 1 (64)
Hence,
|$1 - $3|
=1-gq. 6.5
70 — 7| q (6.5)

(6.6)

Depending on which interval is eliminated, the interval in the next iteration
step will either be of length (¢ + w) |zo — 3], or (1 —q) |zo — z3]. We select the
location of x5 such that the two intervals are of the same length. Hence,

g+w=1-gq. (6.7)

Now, we determine the fraction ¢q. Since we apply the process of interval division
recursively, we know by scale similarity that

— =q. (6.8)

Combining (6.7) and (6.8) leads to

with solutions

3+V56
Bh2=—5 - (6.10)

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

66

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

Since g < 1 by (6.4), the solution of interest is

3—5
2

q= ~ 0.382. (6.11)

The fractional distances g ~ 0.382 and 1 — g ~ 0.618 correspond to the
so-called Golden Section, which gives this algorithm its name.

Note that the interval is reduced in each step by the fraction 1 —gq, i.e., we
have linear convergence. In the m-th iteration, we have

|Zo,m — T2,m| = |T1,m — T3, m| = [To, (m+1) — T3, (m+1)]
= (1—q)™* |zo,0 — x3,0/- (6.12)

Hence, the required number of iterations, m, to reduce the initial interval of
uncertainty |zo, 0 — 3, 0| to at least a fraction r defined as

- A |330,m - 332,m| _ |$17m — x37m| (613)
[wo,0 — @30l [x0,0 — 3,0
is given by
Inr 1 (6.14)
m=————1.)
In(1 —q)

6.1.3 Fibonacci Division

Another way to divide an interval such that we need one function evaluation
per iteration can be constructed as follows: Given an initial interval [z, 4, Z3, ;]
, © = 0, we divide it into three segments symmetrically around its midpoint.
Let di,; < da,; < ds ; denote the distance of the segment endpoints, measured
from zp,;. Then we have by symmetry ds ; = di ; + d2, ;. By the bracket
elimination procedure explained above, we know that we are eliminating a
segment of length d; ;. Therefore, our new interval is of length d3 ;1) = d2 ;-
By symmetry we also have d3 ;1) = d1, (i41) +da, (i41)- Hence, if we construct
our segment length such that ds (;11) = di, (i+1) + d2, (i+1) = d2,: We can reuse
one known point. Such a construction can be done by using Fibonacci numbers,
which are defined recursively by

Fy
F;

F 21, (6.15)
Fi 1+ Fi_s, i€{2,3, ...} (6.16)

> 1>

The first few numbers of the Fibonacci sequence are {1, 1, 2, 3, 5, 8, 13, 21, .. .}.

The length of the intervals d,; and ds ;, respectively, are then given by

Frg P
- dyi= 47—

s

di,; =

s

. ief0,1,...,m}, (6.17)

Foiyo Frivo

where m > 0 describes how many iterations will be done. Note that m must
be known prior to the first interval division. Hence, the algorithm must be

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

67

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

stopped after m iterations.

The reduction of the length of the uncertainty interval per iteration is given
by

Fro_y
ds,i+1) dai g _ Fnin (6.18)
. - . . Fmi F—i - oo :
d3, i dl, i+ d2, i a— + Tmi; Fm71+2
After m iterations, we have

dB,m _ dB,m d3, (m—1) d3,2 d3,1
ds, o d3, (m—-1) d3, (m—2) d3,1 d30

_ B R Fo By 2 (6.19)

EE”.Fm+1 Fm+2 Fm+2

The required number of iterations m to reduce the initial interval d3 ¢ to at
least a fraction 7, defined by (6.13), can again be obtained by expansion from

S d2,m _ ds, (m+1) _ d3 (m+1) d3,m ds,2 d3,1
ds, o ds,o d3,m ds (m-1) ds1 dso
F F Fn Fop 1

= — = ... = . 6.20
F2 F3 Fm+1 Fm+2 Fm+2 ()

Hence, m is given by

} , (6.21)

m:argmin{m | r >

meN Fm+2

6.1.4 Comparison of Efficiency

The Golden Section is more efficient than the Fibonacci Division. Compar-
ing the reduction of the interval of uncertainty, |xo, m — 3, m/|, in the limiting
case for m — oo, we obtain

m m . Fm
lim [P0m = TamlGs 2 (1-g)" = 0.95. (6.22)

m—0o0 |x()7 m 373,m|F m—0o0

6.1.5 Master Algorithm for Interval Division

The following master algorithm explains the steps of the interval division
algorithm.

Copyright (c) 1998-2003 68
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Algorithm 6.1.1 (Model Interval Division Algorithm)

Data: g, T3.
Procedure that returns r;, defined as
ri £ |zo,i — x2,4]/|z0,0 — 23,0.
Step O: Initialize
Axr = x3 — x0,
To = xg + 11 Az,
T1 = xg + 19 Az,

fi=f(@1), fo = f(x2), and

= 2.
Step 1: Tterate.
Replace ¢ by 7 + 1.
If (f2 < f1)
Set xg = x1, 1 = T2,
fl = f27
To = x3 — 1r; Az, and
f2 = f(a2).
else
Set x3 = 29, T2 = 71,
f2 = fla
r1 = xo +1; A,
fi = f(z1).
Step 2: Stop or go to Step 1.

6.1.6 Keywords

For the Golden Section and the Fibonacci Division algorithm, the com-
mand file (see page 94) must contain only one continuous parameter.

To invoke the Golden Section or the Fibonacci Division algorithm, the
Algorithm Section of the GenOpt command file must have following form:

Algorithm{
Main = GoldenSection | Fibonacci;
[AbsDiffFunction = Double; | // 0 < AbsDiffFunction
IntervalReduction = Double;] // 0 < IntervalReduction
}

The keywords have following meaning
Main The name of the main algorithm.

The following two keywords are optional. If none of them is specified, then
the algorithm stops after MaxIte function evaluations (i.e., after MaxIte—2
iterations), where MaxIte is specified in the section OptimizationSettings.
If both of them are specified, an error occurs.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

69

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

AbsDiffFunction The absolute difference defined as

Af £ [min{f(wo), f(z3)} — min{f(z1), f(z2)}]. (6.23)

If Af is lower than AbsDiffFunction, the search stops successfully.
Note: Since the maximum number of interval reductions must be known
for the initialization of the Fibonacci algorithm, this keyword can be
used only for the Golden Section algorithm. It must not be specified for
the Fibonacci algorithm.

IntervalReduction The required maximum fraction, r, of the end interval
length relative to the initial interval length (see equation (6.13)).

Copyright (c) 1998-2003 70
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program

Building Technologies Department

Version 2.0.0 ¢ Simulation Research Group

7 Algorithms for Parametric
Runs

7.1 Parametric Runs by Single Variation

7.1.1 Algorithm Description

The Parametric algorithm allows doing parametric runs where one param-
eter at a time is varied and all other parameters are fixed at their initial values
(specified by the keyword Ini). Each parameter must have a lower and upper
bound. For the logarithmic scale, lower and upper bound must be bigger than
zero. To allow negative increments, the lower bound can be larger than the
upper bound. The absolute value of the keyword Step defines in how many
intervals each coordinate axis will be divided. If Step < 0, then the spacing is
logarithmic, otherwise it is linear. Set Step = 0 to keep the parameter always
fixed at the value specified by Ini.

Next, we explain how the spacing is computed. For simplicity, the expla-
nation is done for one parameter. Let [£ Min, u = Max and m £ |Step|, where

Min, Max and Step are specified in the command file.

If Step < 0, we compute, for 7 € {0,...,m},

1 U
= — log— 7.1
P — o.g T (7.1a)
x; = 1107, (7.1b)
If Step > 0, we compute, for ¢ € {0,...,m},
)
=1+ —(u-=1). 7.1
vt) (7.1¢)

Example 7.1.1 (Parametric run with logarithmic and linear spacing)
Suppose the parameter specification is of the form

Vary{

Parameter{ Name = x1; Ini = 5; Step = -2; Min = 10; Max = 1000;

Parameter{ Name x2; Ini 3; Step 1; Min = 2; Max 20;

}
and the cost function takes two arguments, x1,z2 € R. Then, the cost function

will be evaluated at the points
(z1,22) € {(10,3), (100,3), (1000,3), (5,2), (5,20)}. 0

}
¥

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

71

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

7.1.2 Keywords

For this algorithm, the command file (see page 94) can contain both, con-
tinuous and discrete parameters.

The Parametric algorithm is invoked by the following specification in the
command file:

Algorithm{
Main = Parametric;
StopAtError = true | false;

}

The keywords have following meaning:
Main The name of the main algorithm.

StopAtError If true, then the parametric run stops if a simulation error
occurs. If false, then the parametric run does not stop if a simulation
error occurs. The failed function evaluation will be assigned the function
value zero. For information, an error message will be written to the user
interface and the optimization log file.

Note that the whole section OptimizationSettings of the command file
is ignored.

7.2 Parametric Runs on a Mesh

7.2.1 Algorithm Description

The EquMesh algorithm allows making parametric runs on an orthogonal,
equidistant grid that is spanned in the space of the independent parameters.
To do so, each independent parameter must have a lower and upper bound.
The value of Step (which must be an integer greater than or equal to zero)
specifies into how many intervals each axis will be divided. The spacing is
computed according to (7.1c). Hence, we also allow Min > Max.

Example 7.2.1 (Parametric run on a mesh)
Suppose the parameter specification is of the form

Vary{
Parameter{ Name = x0; Min = -10; Ini = 99; Max = 10; Step = 1; }
Parameter{ Name = x1; Min = 1; Ini = 99; Max = -1; Step = 2; }
}

and the cost function takes two arguments, x1,z2 € R. Then, the cost function
will be evaluated at the points
(331,332) Eé {(_1()’ 1)7 (107 1)7 (_103 O)a (1()’ O)a (_107 _1)7 (103 _1)} O

If the value of Step is equal to zero, then this parameter is fixed at the
value specified by Min.

Copyright (c) 1998-2003 72
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Note that the number of function evaluations increases exponentially with
the number of independent parameters. For example, a 5-dimensional grid with
2 intervals in each dimension requires 3° = 243 function evaluations, whereas
a 10-dimensional grid would require 319 = 59049 function evaluations.

7.2.2 Keywords

For this algorithm, the command file (see page 94) can contain both, con-
tinuous and discrete parameters.

The EquMesh algorithm is invoked by the following specification in the
command file:

Algorithm{
Main = EquMesh;
StopAtError = true | false;
}

The keywords have following meaning:
Main The name of the main algorithm.

StopAtError If true, then the parametric run stops if a simulation error
occurs. If false, then the parametric run does not stop if a simulation
error occurs. The failed function evaluation will be assigned the function
value zero. For information, an error message will be written to the user
interface and the optimization log file.

Note that the whole section OptimizationSettings of the command file
is ignored.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

73

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

8 Constraints

For some optimization problems it is necessary to impose constraints on the
independent variables and/or the dependent variables, as the following example
shows.

Example 8.0.2 Suppose we want to minimize the heating energy of a build-
ing, and suppose that the mass flow m of the heating system is an independent
variable, with constraints 0 < r < 1. Without using constraints, the mini-
mum energy consumption would be achieved for rin = 0, since then the heating
system is switched off. To solve this problem, we can impose a constraint on a
dependent variable. One possibility is to add a “penalty” term to the energy
consumption. This could be such that every time a thermal comfort criterion
(which is a dependent variable) is violated, a large positive number is added
to the energy consumption. Thus, if ppd(z), with ppd: R™ — R, denotes the
predicted percent of dissatisfied people (in percentage), and if we require that
ppd(z) < 10%, we could use the inequality constraint g(x) £ ppd(z) — 10 < 0.

O

In Section 8.1.1, the method that is used in GenOpt to implement box
constraints is described. In Section 8.2, penalty and barrier methods that can
be used to implement constraints on dependent variables are described. They
involve reformulating the cost function and, hence, are problem specific and
have to be implemented by the user.

8.1 Constraints on Independent Variables

8.1.1 Box Constraints

Box constraints are constant inequality constraints that define a feasible
set as

X&2{zeR"|I'<a' <u',ie{l,...,n}}, (8.1)

where —oo < 1* < u® < oo fori € {1,...,n}.

In GenOpt, box constraints are either implemented directly in the opti-
mization algorithm by setting f(z) = oo for unfeasible iterates, or, for some
algorithms, the independent variable x € X is transformed to a new uncon-
strained variable which we will denote in this section by ¢t € R™.

Instead of optimizing the constrained variable x € X, we optimize with
respect to the unconstrained variable ¢t € R™. The transformation ensures that
all variables stay feasible during the iteration process. In GenOpt, the follow-
ing transformations are used:

If I* < af, for some i € {1,...,n},

th = xt — I, (8.2a)
b = 1 (12 (8.2b)

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

74

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

If I* < 2 <, for some i € {1,...,n},

, T
t* = arcsin < a) , (8.2¢)

ut — [t

' = 1" (ub = 1Y) sin® ¢ (8.2d)
If 2t < ', for some i € {1,...,n},

th = Vaul—ai, (8.2¢)

ot o= ut— (12 (8.2f)

8.1.2 Coupled Linear Constraints

In some cases the constraints have to be formulated in terms of a linear
system of equations of the form

Az =0, (8.3)
where A € R™ x R" 2 € R", b € R™, and rank(A) = m.
There are various algorithms that take this kind of restriction into account.
However, such restrictions are rare in building simulation and thus not imple-
mented in GenOpt. If there is a need to impose such restrictions, they can be

included by adding an appropriate optimization algorithm and retrieving the
coefficients by using the methods offered in GenOpt’s class Optimizer.

8.2 Constraints on Dependent Variables
We now discuss the situation where the constraints are non-linear and de-
fined by
g9(z) <0, (8.4)

where g: R™ — R™ is once continuously differentiable. (8.4) also allows formu-
lating equality constraints of the form

h(z) =0, (8.5)
for h: R™ — R™, which can be implemented by using penalty functions. In
example, one can define g*(z) £ hi(z)? for i € {1,...,m}. Then, since g'(:) is

non-negative, the only feasible value is g(-) = 0. Thus, we will only discuss the
case of inequality constraints of the form (8.4).

Such a constraint can be taken into account by adding penalty or barrier
functions to the cost function, which are multiplied by a positive weighting fac-
tor p that is monotonically increased (for penalty functions) or monotonically
decreased to zero (for barrier functions).

We now discuss the implementation of barrier and penalty functions.

Copyright (c) 1998-2003 75
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

8.2.1 Barrier Functions

Barrier functions impose a punishment if the dependent variable gets close
to the boundary of the feasible region. The closer the variable is to the bound-
ary, the higher the value of the barrier function becomes.

To implement a barrier function for g(z) < 0, where g: R™ — R™ is a continu-
ously differentiable function whose elements are strictly monotone increasing,
the cost function f: R™ — R can be modified to

s _
o) & @) + s (3.6)

i=1

where f: R" xR — R. The optimization algorithm is then applied to the new
function f(z,). Note that (8.6) requires that x is in the interior of the feasible
set!.

A drawback of barrier functions is that the boundary of the feasible set
can not be reached. By selecting the weighting factors small, one can get close
to the boundary. However, too small a weighting factor can cause the cost
function to be ill-conditioned, which can cause problems for the optimization
algorithm.

Moreover, if the variation of the iterates between successive iterations is
too big, then the feasible boundary can be crossed. Such a behavior must be
prevented by the optimization algorithm, which can produce additional prob-
lems.

For barrier functions, one can start with a moderately large weighting factor
v and let p tend to zero during the optimization process. That is, one constructs
a sequence

Bo > oo > g > i1 > ... > 0. (87)

Section 8.2.3 shows how p; can be computed in the coarse of the optimization.

Barrier functions do not allow formulating equality constraints of the form (8.5).

8.2.2 Penalty Functions

In contrast to barrier functions, penalty functions allow crossing the bound-
ary of the feasible set, and they allow implementation of equality constraints
of the form (8.5). Penalty functions add a positive term to the cost function if
a constraint is violated.

To implement a penalty function for g(z) < 0, where g: R® — R™ is once
continuously differentiable and each element is strictly monotone decreasing,
the cost function f: R™ — R can be modified to

fla,p) 2 fe)+pYy_ max(0,g'(2))? (8:8)

=1

.e., z satisfies the strict inequality g(z) > 0.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

76

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

where f~: R™ xR — R is once continuously differentiable in 2. The optimization
algorithm is then applied to the new function f(x, u).

As for the barrier method, selecting the weighting factor p is not trivial.
Too small a value for p produces too big a violation of the constraint. Hence,
the boundary of the feasible set can be exceeded by an unacceptable amount.
Too large a value of p can lead to ill-conditioning of the cost function, which
can cause numerical problems.

The weighting factors have to satisfy
0< g <.ovo < g < fig1 < ..., (8.9)

with p; — 00, as i — 0o. See Section 8.2.3 for how to adjust p;.

8.2.3 Implementation of Barrier and Penalty Functions

We now discuss how the weighting factors u; can be adjusted. For ¢ € N,
let z*(u;) be defined as the solution

o™ (i) = argmin f(,), (8.10)
reX

where f(z, ;) is as in (8.6) or (8.8), respectively. Then, we initialize i = 0,
select an initial value pg > 0 and compute x* (o). Next, we select a p; 1 such
that it satisfies (8.7) (for barrier functions) or (8.9) (for penalty functions), and
compute x*(p;+1), using the initial iterate z*(u;), and increase the counter i
to ¢ + 1. This procedure is repeated until p; is sufficiently close to zero (for
barrier functions) or sufficiently large (for penalty functions).

To recompute the weighting factors u;, users can request GenOpt to write
a counter to the simulation input file, and then compute p; as a function of
this counter. The value of this counter can be retrieved by setting the keyword
WriteStepNumber in the optimization command file to true, and specifying
the string Y%stepNumber, in the simulation input template file. GenOpt will
replace the string J%stepNumber with the current counter value when it writes
the simulation input file. The counter starts with the value 1 and its increment
is 1.

Users who implement their own optimization algorithm in GenOpt can call
the method increaseStepNumber(...) in the class Optimizer to increase the
counter. If the keyword WriteStepNumber in the optimization command file is
set to true, the method calls the simulation to evaluate the cost function for
the new value of this counter. If WriteStepNumber is false, no new function
evaluation is performed by this method since the cost function does not depend
on this counter.

Copyright (c) 1998-2003 77
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Input Files

initialization: Specification of file location
(input files, output files, log files, etc.)
command: Specification of parameter names, initial values,
upper /lower bounds, optimization algorithm, etc.
configuration: Configuration of simulation program

(error indicators, start command, etc.)
simulation input template: Templates of simulation input files

=
8]
imulation K
initialization command configuration | |. SHIL A 3
input template |} ‘5
- i
a
: - o
simulation output Y
retrieval g
output g
de
F =
=
log - —_____——"— —_— N
e program
‘) call output I
— M Simulation
p I Program
log

Figure 9.1: Interface between GenOpt and the simulation program that calcu-
lates the cost function.

9 Program

GenOpt is divided into a kernel part and an optimization part. The kernel
reads the input files, calls the simulation program, stores the results, writes
output files, etc. The optimization part contains the optimization algorithms.
It also contains classes of mathematical functions such as those used in linear
algebra.

Since there is a variety of simulation programs and optimization algorithms,
GenOpt has a simulation program interface and an optimization algorithm in-
terface. The simulation program interface allows using any simulation software
to evaluate the cost function (see below for the requirements on the simulation
program), and allows implementing new optimization algorithms with little
effort.

9.1 Interface to the Simulation Program

Text files are used to exchange data with the simulation program and to
specify how to start the simulation program. This makes it possible to couple

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

78

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

any simulation program to GenOpt without requiring code adaptation on either
the GenOpt side or the simulation program side. The simulation program must
satisfy the following requirements:

1. The simulation program must read its input from one or more text files,
must write the value of the cost function to a text file, and must write
error messages to a text file.

2. It must be able to start the simulation program by a command and the
simulation program must terminate automatically. This means that the
user does not have to open the input file manually and shut down the
simulation program once the simulation is finished.

The simulation program may be a commercially available program or one
written by the user.

9.2 Interface to the Optimization Algorithm

The large variety of optimization algorithms led to the development of
an open interface that allows easy implementation of optimization algorithms.
Users can implement their own algorithms and add them to the library of avail-
able optimization algorithms without having to adapt and recompile GenOpt.
To implement a new optimization algorithm, the optimization algorithm must
be written according to the guidelines of Section 9.4. Thus, GenOpt can not
only be used to do optimization with built-in algorithms, but it can also be
used as a framework for developing, testing and comparing optimization algo-
rithms.

Fig. 9.2 shows GenOpt’s program structure. The class Optimizer is the
superclass of each optimization algorithm. It offers all the functions required
for retrieval of parameters that specify the optimization settings, performing
the evaluation of the cost function and reporting results. For a listing of its
methods, see http://simulationresearch.1bl.gov or the Javadoc code doc-
umentation that comes with GenOpt’s installation.

9.3 Package genopt.algorithm

The Java package genopt.algorithm consists of all classes that contain
mathematical formulas that are used by the optimization algorithm. The fol-
lowing packages belong to genopt.algorithm.

genopt.algorithm This package contains all optimization algorithms. The
abstract class Optimizer, which must be inherited by each optimization
algorithm, is part of this package.

genopt.algorithm.util.gps contains a model Generalized Pattern Search
optimization algorithm.

genopt.algorithm.util.linesearch contains classes for doing a line search
along a given direction.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

79

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Optimizer

Optimization
Algorithm

Optimizer Utility Classes

Shared library

for commonly
used methods,
e.g., for

- linear algebra

- optimality check
- line search

GenOpt
Kernel

Optimizations
Algorithm

External

Optimizer

Simulation L - ete.

Program Optimization

Algorithm

Simulation Program Superclass ”Optimizer”
Any simulation program with Offers methods to easily access
text-based 1/0, e.g., GenOpt’s kernel, e.g., for
- EnergyPlus - input retrieving
- SPARK - cost function evaluation
- DOE-2 - result reporting
- TRNSYS - error reporting

- etc. - etc.

Figure 9.2: Implementation of optimization algorithms into GenOpt.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

80

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

genopt.algorithm.util.math contains classes for mathematical operations.

genopt.algorithm.util.optimality contains classes that can be used to
check whether a variable value is at a minimum point or not.

genopt.algorithm.util.pso contains a model Particle Swarm Optimiza-
tion algorithm.

These packages are documented in the Javadoc source code documentation that
comes with GenOpt’s.

9.4 Implementing a New Optimization Algorithm

To implement a new optimization algorithm, you must write a Java class
that has the syntax shown in Fig. 9.3. The class must use the methods of
the abstract class Optimizer to evaluate the cost function and to report the
optimization steps. The methods of the Optimizer class are documented in
the Javadoc source code documentation.

Follow these steps to implement and use your own optimization algorithm:

1. Place the byte-code (ClassName.class) in the directory genopt/algorithm
(on Linux or Unix) or genopt\algorithm (on Windows).

2. Set the value of the keyword Main in the Algorithm section of the op-
timization command file to the name of the optimization class (without
file extension).

3. Add any further keywords that the algorithm requires to the Algorithm
section. The keywords must be located after the entry Main of the opti-
mization command file. The keywords must be in the same sequence as
they are called in the optimization code.

4. Call the method Optimizer.report(final Point, final boolean) af-
ter evaluating the cost function. Otherwise, the result will not be re-
ported.

5. Call either the method Optimizer.increaseStepNumber () or Optimizer.
increaseStepNumber (finalPoint) after the optimization algorithm con-
verged to some point. These methods increase a counter that can be
used to add penalty or barrier functions to the cost function. In particu-
lar, the methods Optimizer.increaseStepNumber () and Optimizer.
increaseStepNumber (finalPoint) increase the variable stepNumber
(see Section 8) by one.

Copyright (c) 1998-2003 81
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

package genopt. al gorithm

i mport genopt. GenOpt ;
i mport genopt.|lang. Opti m zer Excepti on;
i mport genopt.i o. | nput For mat Excepti on;

public class C assNane extends Optinizer{
public d assNane (GenOpt genOpt Dat a)

t hrows | nput For mat Excepti on, Opti nmi zer Excepti on,
| OException, Exception

// set the mode to specify whether the

// default transformations for the box
// constraints should be used or not
int constraint Mode = xXXXxXx;

super (genOpt Dat a, constrai nt Mbde) ;

// remaining code of the constructor

}
public int run() throws Optinizer Exception, |OException

// the code of the optimization algorithm

// add any further methods and data members

Figure 9.3: Code snippet that specifies how to implement an optimization
algorithm.

Copyright (c) 1998-2003 82
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

10 Installing and Running
GenOpt

10.1 Installing GenOpt

GenOpt 2.0.0 g is written in Java 2 v1.4.1 to ensure platform independence.
To use GenOpt, a Java interpreter for Java 2 v1.4.1 or higher must be installed,
such as Sun’s Java Runtime Environment (JRE). Users who want to add their
own optimization algorithm must also have a Java compiler. Sun’s Java Devel-
opment Kit (JDK) contains a compiler and the runtime environment. GenOpt
has been tested with Sun’s Java 2 v1.4.1 .

JRE and JDK can be downloaded from http://java.sun.com/products/.
JRE and JDK also run on the Windows operating system.

After Java has been installed, the file go_prg.linux (self extracting file, for
Linux only) or go_prg.zip must be downloaded from http://SimulationResearch.
1bl.gov and extracted. On Linux, the file go_prg.linux can be extracted by

typing

chmod +x go_prg.linux
./go_prg.linux

On Unix, the file go_prg.zip can be extracted by typing

unzip go_prg.zip go_prg
On Windows, the file go_prg.zip can be extracted with the software WinZip.

10.2 System Configuration for JDK Installation
In the instructions below, “.” stands for the current directory and the
directory go_prg contains the directory genopt (i.e., go_prg/genopt) where
the Java class files of GenOpt are stored.

10.2.1 Linux/Unix

The installation is explained for the bash-shell and the C-shell. We assume
that the Java binaries are in the directory /usr/local/jdk/bin. For the bash-
shell, the following lines must be added to the file “/.bashrc:

PATH="$PATH: /usr/local/jdk/bin"
CLASSPATH="$CLASSPATH: . : $HOME/go_prg"
export PATH CLASSPATH

For the C-shell, the following lines must be added to the file /. cshrc:

set PATH=PATH:/usr/local/jdk/bin
setenv CLASSPATH CLASSPATH: . :$HOME/go_prg

Copyright (c) 1998-2003 83
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

10.2.2 Microsoft Windows

The PATH variable of the system must contain the directory where the Java
Virtual Machine is located. For example,

SET PATH=}PATH/;C:\prog\jdk\bin

There must also be a CLASSPATH variable that points to the Java classes.
This variable has the form

SET CLASSPATH=}CLASSPATHY,; .;C:\prog\go_prg

In Windows 2000, both variables can be specified under “Start — Settings
— Control Panel — System — Advanced — Environment Variables...”. In

Windows 95 and 98, they can be specified in the autoexec.bat file.

10.3 Starting an Optimization with JDK
Installation

GenOpt can be run either with a graphical user interface (GUI), or as a
console application. The GUI has an online chart that shows the optimization
progress of the cost function and of certain parameters. Any values can be
added to or removed from the chart during runtime. The console application
allows running GenOpt with a batch job for several sequential optimizations
or starting GenOpt over a remote connection, e.g., using telnet. The version
with the GUI can be started with the command

java genopt.WinGenOpt
and the console version can be started with the command
java genopt.GenOpt [Optimization Initialization File]

In these commands, java is the name of the Java virtual machine (that inter-
prets the byte code), and genopt.WinGenOpt (or genopt.GenOpt) is the full
name of the main class. The brackets indicate that the last parameter is op-
tional. The optimization initialization file can also be specified after starting
GenOpt.

Copyright (c) 1998-2003 84
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

10.4 System Configuration for JRE Installation

First, make sure that the path variable points to the path where the jre
binary (i.e., jre.exe) is located. If this is not the case, set the path variable
as described in Section 10.2.

We recommend setting an environment variable, similar to the CLASSPATH
variable, to the genopt directory. This can be done in the same way as de-
scribed for the CLASSPATH variable for the JDK installation. Note that on
Windows platforms, JRE will ignore the CLASSPATH environment variable. For
both Windows and Solaris platforms, the —cp option is recommended to specify
an application’s class path (see below).

10.5 Starting an Optimization with JRE
Installation

The GUI version can be launched with the command
jre -cp %CLASSPATHY, genopt.WinGenOpt
and the console version with
jre -cp %CLASSPATHY, genopt.GenOpt [OptInitializationFile]

where CLASSPATH is the name of the environment variable that points to the
genopt directory.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

85

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

11 Setting Up an Optimization
Problem

We will now discuss how to set up an optimization problem.

First, define a cost function. The cost function is the function that needs
to be minimized. It must be evaluated by an external simulation program
that satisfies the requirements listed on page 79. To maximize a cost function,
change the sign of the cost function to turn the maximization problem into a
minimization problem.

Next, specify possible constraints on the independent variables or on de-
pendent variables (dependent variables are values that are computed in the
simulation program). To do so, use the default scheme for box constraints
on the independent variables or add penalty or barrier functions to the cost
function as described in Chapter 8.

Next, make sure that the simulation program writes the cost function value
to the simulation output file. It is important that the cost function value is
written to the output file without truncating any digits (see Section 11.3). For
example, if the cost function is computed by a Fortran program in double
precision, it is recommended to use the E24.16 format in the write statement.

In the simulation output file, the cost function value must be indicated by
a string that stands in front of the cost function value (see page 91).

Then, specify the files described in Section 11.1 and, if required, implement
pre- and post-processing, as described in Section 11.2.

11.1 File Specification

This section defines the file syntax for GenOpt. The directory example of
the GenOpt installation contains several examples.

The following notation will be used to explain the syntax:

1. Text that is part of the file is written in fixed width fonts.

2. | stands for possible entries. Only one of the entries that are separated
by | is allowed.

3. [] indicates optional values.
4. The file syntax follows the Java convention. Hence,

(a) // indicates a comment on a single line,

(b) /* and */ enclose a comment,

(c) the equal sign, =, assigns values,

(d) a statement has to be terminated by a semi-colon, ;,

(e) curly braces, { }, enclose a whole section of statements, and

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

86

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

(f) the syntax is case sensitive.

The following basic types are used:

String Any sequence of characters.

If the sequence contains a blank character,

it has to be enclosed in apostrophes (").

If there are apostrophes within quoted text,

they must be specified by a leading backslash (i.e., \").
Similarly, a backslash must be preceded by another
backslash (i.e., "c:\\go_prg").

StringReference | Any name of a variable that appears in the same section.

Integer Any integer value.
Double Any double value (including integer).
Boolean Either true or false

The syntax of the GenOpt files is structured into sections of parameters
that belong to the same object. The sections have the form

ObjectKeyWord { Object }

where Object can either be another ObjectKeyWord or an assignment of the
form

Parameter = Value ;

Some variables can be referenced. References have to be written in the
form

Parameter = ObjectKeyWordl.0ObjectKeyWord2.Value ;

where ObjectKeyWord1l refers to the root of the object hierarchy as specified
in the corresponding file.

11.1.1 Initialization File
The initialization file specifies
1. where the files of the current optimization problems are located,
2. which simulation files the user likes to have saved for latter inspection,

3. what additional strings have to be passed to the command that starts
the simulation (such as the name of the simulation input file),

4. what number in the simulation output file is a cost function value,

5. whether and if so, how, the cost function value(s) have to be post-
processed, and

6. which simulation program is being used.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

87

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

The sections must be specified in the order shown below. The order of the
keywords in each section is arbitrary, as long as the numbers that follow some
keywords (such as Filel) are in increasing order.

The initialization file syntax is

Simulation {
Files {
Template {
Filel = String | StringReference;
[Pathl = String | StringReference;]

[File2 = String | StringReference;
[Path2 = String | StringReference;]
[...1]1

3
Input { // the number of input file must be equal to
// the number of template files
Filel = String | StringReference;
[Pathl = String | StringReference;]
[SavePathl = String | StringReference;]

[File2 = String | StringReference;
[Path2 = String | StringReference;]
[SavePath2 = String | StringReference;]
[...1]1
}
Log {
The Log section has the same syntax as the Input section.
}
Output {

The Output section has the same syntax as the Input section.

}
Configuration {
Filel = String | StringReference;

[Pathl = String | StringReference;]

}
} // end of section Simulation.Files
[CallParameter {

[Prefix = String | StringReference;]

[Suffix = String | StringReference;]

3]
[ObjectiveFunctionLocation {
Namel = String;
Delimiterl = String | StringReference; | Functionl = String;
[Name2 = String;
Delimiter2 = String | StringReference; | Function2 = String;
Copyright (c) 1998-2003 88

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
... 11
H

} // end of section Simulation
Optimization {
Files {
Command {
Filel = String | StringReference;
[Pathl = String | StringReference;]
}
}

} // end of section Optimization

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

89

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

The sections have the following meaning:

Simulation.Files.Template GenOpt writes the value of the independent
variables to the simulation input files. To do so, GenOpt reads the simu-
lation input template files, replaces each occurrence of %variableName?,
by the numerical value of the corresponding variable, and the result-
ing file contents are written as the simulation input files. The string
%variableName, refers to the name of the variable as specified by the
entry Name in the optimization command file on page 94.

The independent variables can be written to several simulation input
files if required. To do so, specify as many Filei and Pathi assignments
as necessary (where i stands for a one-based counter of the file and path
name). Note that there must obviously be the same number of files and
paths in the Input section that follows this section.

If there are multiple simulation input template files, each file will be
written to the simulation input file whose keyword ends with the same
number.

The following rules are imposed:

1. Each variable name specified in the optimization command file must
occur in at least one simulation input template file or in at least one
function that is specified in the section ObjectiveFunctionLocation
below.

2. Multiple occurrences of the same variable name are allowed in the
same file and in the same function specification (as specified by the
keyword Functioni, i =1,2,...).

3. Ifthe value WriteStepNumber in the section OptimizationSettings
of the optimization command file is set to true, then rule 1 and 2
apply also to %stepNumbery,. If WriteStepNumber is set to false,
then %stepNumbery, can occur, but it will be ignored.

Simulation.Files.Input The simulation input file is generated by GenOpt
based on the current parameter set and the corresponding simulation in-
put template file, as explained in the previous paragraph. Obviously, the
number of simulation input files must be equal to the number of simula-
tion input template files.

The section Input has an optional keyword, called SavePath. If SavePath
is specified, then the corresponding input file will after each simulation
be copied into the directory specified by SavePath. The copied file will
have the same name, but with the simulation number added as prefix.

Simulation.Files.Log GenOpt scans the simulation log file for error mes-
sages. The optimization terminates if any of the strings specified by the

Copyright (c) 1998-2003 90
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

variable ErrorMessage in the SimulationError section of the GenOpt
configuration file is found. At least one simulation log file must be spec-
ified.

The section Log also has the optional keyword SavePath. It has the
same functionality as explained in the previous section.

Simulation.Files.Output GenOpt reads the cost function value from this
file. GenOpt assumes that the value that is written after the last occur-
rence of the string specified by Delimiteri (i = 1,2,...) in the section
ObjectiveFunctionLocation is the cost function value. The number
of cost function values is arbitrary (but at least one must be specified).
The optimization algorithms minimize the first cost function value. The
other values can be used for post-processing of the simulation output.
They will also be reported to the output files and the online chart.

GenOpt searches for the cost function value as follows:

1. After the first simulation, GenOpt searches for the first cost func-
tion value in the first output file. The number that occurs after the
last occurrence of the string specified by the variable Delimiteri
(1 = 1,2,...) in the section ObjectiveFunctionLocation is as-
sumed to be the cost function value. If the first output file does
not contain the first cost function value, then GenOpt reads the
second output file (if present) and so on until the last output file is
read. If GenOpt cannot find the cost function value in any of the
output files or function definitions, it will terminate with an error.
The same procedure is repeated with the second cost function value
(if present) until all cost function values have been found.

2. In the following iterations, GenOpt will only read the file(s) where it
found the cost function value(s) after the first simulation. The files
that did not contain a cost function value after the first simulation
will not be read anymore.

This section also contains the optional keyword SavePath. If this key-
word is specified, then GenOpt copies the output file. This is particularly
useful for doing parametric runs.

Simulation.Files.Configuration The entries in this section specify the
simulation configuration file, which contains information that is related
to the simulation program only, but not related to the optimization prob-
lem. The simulation configuration file is explained below.

Simulation.CallParameter Here, a prefix and suffix for the command that
starts the simulation program can be added. With these entries, any
additional information, such as the name of the weather file, can be
passed to the simulation program. To do so, one has to refer to either of
these entries in the argument of the keyword Command (see page 93).

Copyright (c) 1998-2003 91
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Simulation.ObjectiveFunctionLocation This section specifies where the
cost function values can be found in the simulation output files, and
possibly how these values have to be post-processed before they will be
passed to the optimization algorithm.

GenOpt reads the value after the last occurrence of Delimiteri (i
= 1,2,...) as the cost function value. The value of Namei is used to
label the results in the output reports.

Alternatively to the entry Delimiteri, an entry Functioni can be spec-
ified to define how the cost function values should be post-processed. See
page 98 for an example.

For convenience, the section ObjectiveFunctionLocation can option-
ally be specified in the initialization file, but its specification is required
in the configuration file. If this section is specified in both files, then the
specification in the initialization file will be used.

Specifying the section ObjectiveFunctionLocation in the initialization
file is of interest if a simulation program is used for different problems
that require different values of this section. Then, the same (simulation
program specific) configuration file can be used for all runs and the dif-
ferent settings can be specified in the (project dependent) initialization
file rather than in the configuration file.

Optimization.Files.Command This section specifies where the optimiza-
tion command file is located. This file contains the mathematical infor-
mation of the optimization. See page 94 for a description of this file.

11.1.2 Configuration File

The configuration file contains information related only to the simulation
program used and not to the optimization problem. Hence, it has to be written
only once for each simulation program and operating system. We recommend
to put this file in the directory cfg so that it can be used for different op-
timization projects. Some configuration files are provided with the GenOpt
installation.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

92

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

The syntax is specified by

// Error messages of the simulation program.
SimulationError{

ErrorMessage = String;

[ErrorMessage = String;

[... 1]
}

// Number format for writing simulation input files.
10{

NumberFormat = Float | Double;
}

// Specifying how to start the simulation program.
SimulationStart{

Command = String;

WriteInputFileExtension = Boolean;

}

// Specifying the location of the
// cost function value in the simulation output file
ObjectiveFunctionLocation{

Namel = String;
Delimiterl = String | StringReference; | Functionl = String;
[Name2 = String;
Delimiter2 = String | StringReference; | Function2 = String;
[...1]1

}

The entries have following meaning:

SimulationError The error messages that might be written by the simu-
lation program must be assigned to the keyword ErrorMessage so that
GenOpt can check whether the simulation has completed successfully.
At least one entry for ErrorMessage must be given.

I0 The keyword NumberFormat specifies in what format the independent pa-
rameters will be written to the simulation input file. The setting Double
is recommended, unless the simulation program cannot read this number
format.

SimulationStart The keyword Command specifies what string must be used
to start the simulation program. It is important that this command waits
until the simulation terminates (see the directory cfg for examples). The
value of the variable Command is treated in a special way: Any value of
the optimization initialization file can be automatically copied into the

Copyright (c) 1998-2003 93
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

value of Command. To do so, surround the reference to the corresponding
keyword with percent signs. For example, a reference to the keyword
Prefix of the initialization file looks like

%Simulation.CallParameter.Prefix},

By setting WriteInputFileExtension to false, the value of the key-
word Simulation.Input.Filei (where i stands for 1, 2, 3) is copied
into Command, and the file extension is removed.

ObjectiveFunctionLocation Note that this section can also be specified in
the initialization file. The section in this file is ignored if this section is
also specified in the configuration file. See page 92 for a description.

11.1.3 Command File

The command file specifies optimization-related settings such as the inde-
pendent parameters, the stopping criteria and the optimization algorithm being
used. The sequence of the entries in all sections of the command file is arbitrary.

There are two different types of independent parameters, continuous pa-
rameters and discrete parameters. Continuous parameters can take on any
values, possibly constrained by a minimum and maximum value. Discrete pa-

rameters can take on only user-specified discrete values, to be specified in this
file.

Some algorithms require all parameters to be continuous, or all parameters
to be discrete, or allow both continuous and discrete parameters. Please refer
to the algorithm section on page 15-73.

a) Specification of a Continuous Parameter
The structure for a continuous parameter is

// Settings for a continuous parameter
Parameter{

Name = String;

Ini = Double;

Step = Double;

[Min = Double | SMALL;]

[Max = Double | BIG;]

[Type = CONTINUOUS;]

}

The entries are:

Name The name of the independent variable. GenOpt searches the simula-
tion input template files for this string — surrounded by percent signs —
and replaces each occurrence by its numerical value before it writes the
simulation input files.

Copyright (c) 1998-2003 94
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Ini Initial value of the parameter.

Step Step size of the parameter. How this variable is used depends on
the optimization algorithm being used. See the optimization algorithm
descriptions for details.

Min Lower bound of the parameter. If the keyword is omitted or set to
SMALL, the parameter has no lower bound.

Max Upper bound of the parameter. If the keyword is omitted or set to BIG,
the parameter has no upper bound.

Type Optional keyword that specifies that this parameter is continuous. By
default, if neither Type nor Values (see below) are specified, then the
parameter is considered to be continuous and the Parameter section
must have the above format.

b) Specifi cation of a Discrete Parameter

For discrete parameters you need to specify the set of admissible values.
Alternatively, if a parameter is spaced either linearly or logarithmically, specify
the minimum and maximum value of the parameter and the number of intervals.

First, we list the entry for the case of specifying the set of admissible values:

// Settings for a discrete parameter

Parameter{
Name = String;
Ini = Integer;
Values = String;
[Type = SET;]
X

The entries are:
Name As for the continuous parameter above.

Ini 1-based index of the initial value. For example, if Values specifies three
admissible values, then Ini can be either 1, 2, or 3.

Values Set of admissible values. The entry must be of the form
Values = "valuel, value2, value3";

i.e., the values are separated by a comma, and the list is enclosed in
apostrophes ("). For valuel, value2, etc., numbers and strings are
allowed.

If all entries of Values are numbers, then the result reports contain
the actual values of this entry. Otherwise, the result reports contain
the index of this value, i.e., 1 corresponds to valuel, 2 corresponds to
value?2, etc.

Type Optional keyword that specifies that this parameter is discrete. By
default, if the entry Values is specified, a parameter is considered to be
discrete, and the Parameter section must have the above format.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

95

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

To obtain linear or logarithmic spacing between a minimum and maximum
value, the Parameter section can be specified as

// Settings for a discrete parameter, linearly or logarithmically spaced
Parameter{
Name = String;

Ini = Integer;
Type = SET;

Min = Double;
Max = Double;
Step = Integer;

Name As for the continuous parameter above.

Ini 1-based index of the initial value. For example, if Step is set to +2 or
to —2, then Ini can be set to any integer between 1 and 3.

Type This variable must be equal to SET.
Min Minimum value of the spacing.
Max Maximum value of the spacing.

Step Number of intervals. If Step < 0, then the spacing is logarithmic,
otherwise it is linear. Set Step = 0 to keep the parameter always fixed
on its minimum value.

The linear or logarithmic spacing is computed using (7.1) on page 71.

c) Specification of Input Function Objects

The specification of input function objects in optional. If any input func-
tion object is specified, then its name must appear either in another input
function object, in a simulation input template file, or in an output function
object. Otherwise, GenOpt terminates with an error message. See Section 11.2
on page 98 for an explanation of input and output function objects.

The syntax for input function objects is

// Input function objects entry

Function{
Name = String;
Function = String;

}

The entries are

Name A unique name that is not used for any other input function object
and for any other independent parameter.

Function A function object (see Section 11.2 on page 98). The string must
be enclosed by apostrophes (").

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

96

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

d) Structure of the Command File

Using above structures of the Parameter section, the command file has the
structure

// Settings of the independent parameters
Vary{
// Parameter entry
List any of the Parameter sections as described
in the Sections 11.1.3.a) and 11.1.3.b).

// Input function object
List any of the Function sections as described
in the Section 11.1.3.c).

}

// General settings for the optimization process
OptimizationSettings{
MaxIte = Integer;
WriteStepNumber = Boolean;
[MaxEqualResults = Integer;]

}

// Specification of the optimization algorithm
Algorithm{
Main = String;
... // any other entries that are required
// by the optimization algorithm

}

The different sections are:

Vary This section contains the definition of the independent parameter and
the input function objects. See Sections 11.1.3.a), 11.1.3.b), and 11.1.3.c)
for possible entries.

OptimizationSettings This section specifies general settings of the opti-

mization. MaxIte is the maximum number of iterations. After MaxIte
main iterations, GenOpt terminates with an error message.
WriteStepNumber specifies whether the current step of the optimization
has to be written to the simulation input file or to a function object.
The step number can be used to calculate a penalty or barrier function
(see Section 8.2 on page 75).
The optional parameter MaxEqualResults specifies how many times the
cost function value can be equal to a value that has previously been
obtained before GenOpt terminates. This setting is used to terminate
GenOpt if the cost function value is constant for several iterates (see
Section 11.3). The default value of MaxEqualResults is 5.

Copyright (c) 1998-2003 97
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Algorithm The setting of Main specifies which algorithm is invoked for doing
the optimization. Its value has to be equal to the class name that con-
tains the algorithm. Note that additional parameters might be required
depending on the algorithm used (see Section 5 for the implemented
algorithms).

11.1.4 Log File

GenOpt writes a log file to the directory that contains the initialization
file. The name of the log file is GenOpt.log.

The GenOpt log file contains general information about the optimization
process. It also contains warnings and errors that occur during the optimiza-
tion.

11.1.5 Output File

In addition to GenOpt.log, GenOpt writes two output files to the directory
where the optimization command file is located. (The location of the optimiza-
tion command file is defined by the variable Optimization.Files.Command.
Pathl in the optimization initialization file).

The names of the output files are OutputListingMain. txt and OutputListingAll.

txt. They list the optimization steps. OutputListingMain.txt contains only
the main iteration steps, and OutputListingAll.txt contains all iteration
steps.

Each time the method genopt.algorithm.Optimizer.report () is called
from the optimization algorithm, the current trial is reported in either one of
the files.

11.2 Pre-Processing and Post-Processing

Some simulation programs do not have the capability to pre-process the
independent variables, or to post-process values computed during the simula-
tion. For such situations, GenOpt’s input function objects and output function
objects can be used.

a) Function Objects

Function objects are formulas whose arguments can be the independent
variables, the keyword stepNumber, and for post-processing, the result of the
simulation.

Following functions are implemented:

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

98

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

Function Returns

add (x0, x1) 29 + 2t

add (x0, x1, x2) 29 + xt + 22

subtract (x0, x1) 20 — gt

multiply(x0, x1) 202!

multiply (x0, x1, x2) | 202! 22

divide(x0, x1) 20/t

log10(x0) logo(zY)

Furthermore, all functions that are defined in the class java.lang.StrictMath
and whose arguments and return type are of type double can be accessed by
typing their name (without the package and class name).

In addition, users can implement any other static method with arguments
and return type double by adding the method to the file genopt/algorithm/util/math/Fun. java.
The method must have the syntax

public static double methodName(double x0, double x1) {
double r;
// do any computations
return r;

}

The number of arguments is arbitrary.

Compile the file after adding new methods. No other changes are required.
To compile the file, a Java compiler must be installed (such as the one from
Sun Microsystems). To compile it, open a console (or DOS window), change
to the directory genopt/algorithm/util/math and type

javac -source 1.4 Fun.java

This will generate the file Fun.class. If the compilation fails, then the variable
CLASSPATH is probably not set as described in Chapter 10.

Next, we present an example for pre-processing and afterwards an example
for post-processing.

b) Pre-Processing

Example 11.2.1 Suppose we want to find the optimal window width and
height. Let w and h denote the window width and height, respectively. Suppose
we want the window height to be 1/2 times the window width, and the window
width must be between 1 and 2 meters. Then, we could specify in the command
file the section

Parameter{
Name = W;
Ini = 1.5; Step = 0.05;
Min = 1; Max = 2;
Copyright (c) 1998-2003 99

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Type = CONTINUOUS;
}
Function{

Name = h; Function = "multiply(%w’%, 0.5)";
}

Then, in the simulation input template files, GenOpt will replace all occur-
rences of %w% by the window width and all occurences of %h% by 1/2 times the
numerical value of %w%. 0

GenOpt does not report values that are computed by input functions. To
report such values, they need to be specified in the section ObjectiveFunctionLocation,
as shown in Example 11.2.2 below.

c) Post-Processing

Example 11.2.2 Suppose we want to minimize the sum of annual heating
and cooling energy consumption, which we will call total energy. Some simu-
lation programs cannot add different output variables. For example, Energy-
Plus [CLW™01] writes the heating and cooling energy consumption separately
to the output file. In order to optimize the total energy, the simulation output
must be post-processed.

To post-process the simulation results in GenOpt, we can proceed as fol-
lows:
Suppose the cost function delimiter (see Section 11.1.1) for the heating and
cooling energy are, respectively, Eheat= and Ecool=. In addition, suppose we
want to report the value of the variable h that has been computed by the input
function object in Example 11.2.1.

Then, in the optimization initialization file (see Section 11.1.1) we can
specify the section

ObjectiveFunctionLocation{
Namel = E_tot; Functionl = "add(%E_heat?%, %E_cool’%)";

Name2 = E_heat; Delimiter2 = "Eheat=";
Name3 = E_cool; Delimiter3 = "Ecool=";
Name4 = height; Function4 = %h%;

}

This specification causes GenOpt to (i) substitute the value of h in Function4,
(ii) read from the simulation output file(s) the numbers that occur after the
strings Eheat= and Ecool=, (iii) substitute these numbers into the function
add(%E_heat%, %E_cooly,), (iv) evaluate the functions Functionl and Function4,
and (v) minimize the sum of heating and cooling energy. 0

As arguments of the function defined above, we can use any name of an in-
dependent variable, of an input function object, or the keyword %stepNumber?,.

Copyright (c) 1998-2003 100
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

11.3 Truncation of Digits of the Cost Function

Value
f@)A
0.1 //
\ 0.0 = R

\2.0 —1.5 —-1.0 —0 0.0 0.5 1.0 1.5 =z

\ Py

\ a

\Bfg —0.2

Figure 11.1: Function (11.1) with machine precision and with truncated digits.
The upper line shows the cost function value with machine precision, and the
lower line shows the cost function value with only two digits beyond the decimal
point.

For 2/ € R™ and f: R™ — R, assume there exists a scalar § > 0 such that
f(z') = f(2") for all " € B(2',0), where B(2/,0) £ {z" € R™ | ||’ —2"]|| < 6}.
Obviously, in B(z’,¢), an optimization algorithm can fail because iterates in
B(a',d) contain no information about descent directions outside of B(z',d).
Furthermore, in absence of convexity of f(-), the optimality of x’ cannot be
ascertain in general.

Such situations can be generated if the simulation program writes the cost
function value to the output file with only a few digits. Fig. 11.1 illustrates
that truncating digits can cause problems particularly in domains of f(-) where
the slope of f(-) is flat. In Fig. 11.1, we show the function

f(z) 201z —0.12%+0.04 2% (11.1)

The upper line is the exact value of f(-), and the lower line is the rounded
value of f(-) such that it has only two digits beyond the decimal point. If the
optimization algorithm makes changes in « in the size of 0.2, then it may fail
for 0.25 < x < 1, which is far from the minimum. In this interval, no useful
information about the descent of f(-) can be obtained. Thus, the cost function
must be written to the output file without truncating digits.

To detect such cases, the optimization algorithm can cause GenOpt to check
whether a cost function values is equal to a previous cost function value. If
the same cost function value is obtained more than a user-specified number of
times, then GenOpt terminates with an error message. The maximum number

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

101

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

of equal cost function values is specified by the parameter MaxEqualResults
in the command file (see page 94).

GenOpt writes an information to the user interface and to the log file if a
cost function value is equal to a previous function value.

Copyright (c) 1998-2003 102
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

12 Conclusion

In system optimization it is not possible to apply a general optimization
algorithm that works efficiently on all problems. What algorithm should be
used depends on the properties of the cost function, such as the number of
independent parameters, the continuity of the cost function and its derivatives,
and the existence of local minima. Thus a variety of optimization algorithms
is needed. To address this need, GenOpt has a library with different optimiza-
tion algorithms and an optimization algorithm interface that users can use to
implement their own optimization algorithm if desired.

For optimizing the the functions that GenOpt is aimed at, a generaliza-
tion of the structure of the optimization process can be made. The fact that
analytical properties of the cost function are unavailable makes it possible to
separate optimization and function evaluation. Therefore, GenOpt has a sim-
ulation program interface that allows coupling any program that exchanges
input and output using text files. Hence, users are not restricted to using a
special program for evaluating the cost function. Rather, they can use the
simulation program they are already using for their system design and devel-
opment. Thus, the system can be optimized with little additional effort.

This open environment not only allows coupling any simulation program
and implementing special purpose algorithms, but it also allows sharing algo-
rithms among users. This makes it possible to extend the algorithm library
and thus extend GenOpt’s applicability.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

103

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

13 Acknowledgment

The development of GenOpt was sponsored by grants from the Swiss Academy
of Engineering Sciences (SATW), the Swiss National Energy Fund (NEFF) and
the Swiss National Science Foundation (SNF') and is supported by the Assis-
tant Secretary for Energy Efficiency and Renewable Energy, Office of Building
Technology Programs of the U.S. Department of Energy, under Contract No.
DE-AC03-76SF00098. T would like to thank these institutions for their generous
support.

Copyright (c) 1998-2003 104
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

14 Notice

The Government is granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevocable, worldwide license in this data to reproduce,
prepare derivative works, and perform publicly and display publicly. Beginning
five (5) years after the date permission to assert copyright is obtained from
the U.S. Department of Energy, and subject to any subsequent five (5) year
renewals, the Government is granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevocable, worldwide license in this data to reproduce,
prepare derivative works, distribute copies to the public, perform publicly and
display publicly, and to permit others to do so. NEITHER THE UNITED
STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR
ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY
FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY
INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED,
OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

105

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

A Benchmark Tests

This section lists the settings used in the benchmark tests on page 61.

The settings in OptimizationsSettings and Algorithm are the same for
all runs expect for Accuracy, which is listed in the result chart on page 62.

The common settings were:

OptimizationSettings{
MaxIte = 1500;
WriteStepNumber = false;

}

Algorithm{
Main = NelderMeadONeill;
Accuracy = see page 62;
StepSizeFactor = 0.001;
BlockRestartCheck = 5;
ModifyStoppingCriterion = see page 62;

}

The benchmark functions and the Parameter settings in the Vary section are
shown below.

A.1 Rosenbrock
The Rosenbrock function that is shown in Fig A.1 is defined as
Fl@) 2100 (22 — (21)2)* + (1 — 1), (A1)
where z € R%. The minimum is at z* = (1, 1), with f(z*) = 0.

The section Vary of the optimization command file was set to

Vary{
Parameter{
Name = x1; Min = SMALL;
Ini = -1.2; Max = BIG;
Step = 1;
¥
Parameter{
Name = x2; Min = SMALL;
Ini = 1; Max = BIG;
Step = 1;
¥
¥

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

106

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 8 Simulation Research Group

Figure A.1: Rosenbrock function.

A.2 Function 2D1

This function has only one minimum point. The function is defined as

3
F@) 2y @), (2:2)
with
fa 2 eorgmen. 12 (5) @2 (Y 7).)
f2(z) £ 100 arctan((2 —z')* + (2 — 2°)?), (A4)
f(x) & 50arctan((0.5+ z")* + (0.5 + 2?)?), (A.5)

where x € R2. The function has a minimum at z* = (1.855340, 1.868832),
with f(z*) = —12.681271. It has two regions where the gradient is very small
(see Fig. A.2).

Copyright (c) 1998-2003 107
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory

Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group
N
X2 2
-4 ‘QQ 2 4
P
4

Figure A.2: Contour plot of ag,;(lx) =0 and ag’;(f) = 0, where f(z) is as in

(A.2).

The section Vary of the optimization command file is

Vary{
Parameter{
Name = x0; Min = SMALL;
Ini = -3; Max = BIG;
Step = 0.1;
}
Parameter{
Name = x1; Min = SMALL;
Ini = -3; Max = BIG;
Step = 0.1;
}
}

A.3 Function Quad

The function “Quad” is defined as
1
f(z) = (b, x) + 5(;10, M z), (A.6)

where b,z € R, M € R19%10 and
b2 (10, 10, ..., 10)T. (A7)

This function is used in the benchmark test with two different positive definite
matrices M. In one test case, M is the identity matrix I and in the other test
case M is a matrix, called @), with a large range of eigenvalues. The matrix @
has elements

Copyright (c) 1998-2003 108
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt

Generic Optimization Program
Version 2.0.0 8

Lawrence Berkeley National Laboratory
Building Technologies Department
Simulation Research Group

579.7818 —227.6855 49.2126 —60.3045 —152.4101 —207.2424 8.0917 33.6562 204.1312 —3.7129
—227.6855 236.2505 —16.7689 —40.3592 179.8471 80.0880 —64.8326 15.2262 —92.2572 40.7367
49.2126 —16.7689 841037 —71.0547 20.4327 51911 —58.7067 —36.1088 —62.7296 7.3676
—60.3045 —40.3592 —71.0547 170.3128 —140.0148 8.9436 26.7365 125.8567 62.3607 —21.9523
—152.4101 179.8471 20.4327 —140.0148 301.2494 45.5550 —31.3547 —95.8025 —164.7464 40.1319
—207.2424 80.0880 5.1911 8.9436 45.5550 178.5194 22.9953 —39.6349 —88.1826 —29.1089
8.0917 —64.8326 —58.7067 26.7365 —31.3547 22.9953 124.4208 —43.5141 75.5865 —32.2344
33.6562 15.2262 —36.1088 125.8567 —95.8025 ~ —30.6349 —43.5141 261.7592 86.8136 22.9873
204.1312 —92.2572 —62.7296 62.3607 —164.7464 —88.1826 75.5865 86.8136 265.3525 —1.6500
—3.7129 40.7367 7.3676 —21.9523 401319 —29.1089 —32.2344 22.9873 —1.6500 49.2499
The eigenvalues of) are in the range of 1 to 1000.
The functions have minimum points x* at
Matrix M: I Q
0
x* —10 —2235.1810
1
x* —10 —1102.4510
2
x* —10 790.6100
3
x* —10 —605.2480
4
x* —10 —28.8760
5
x* —10 228.7640
6
x* —10 —271.8830
7
x* —10 —3312.3890
8
x* —10 —2846.7870
9
x* —10 —718.1490
f(x*) —500 0
Both test functions have been optimized with the same parameter settings.
The settings for the parameters x0 to x9 are all the same, and given by
Vary{
Parameter{
Name = x0; Min = SMALL;
Ini = 0; Max = BIG;
Step = 1;
Copyright (c) 1998-2003 109

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt Lawrence Berkeley National Laboratory
Generic Optimization Program Building Technologies Department
Version 2.0.0 ¢ Simulation Research Group

Bibliography

[ADO3] Charles Audet and J. E. Dennis, Jr. Analysis of generalized pattern
searches. STAM Journal on Optimization, 13(3):889-903, 2003.

[AvrT76] Mordecai Avriel. Nonlinear programming. Prentice-Hall Inc., En-
glewood Cliffs, N.J., 1976.
[BP66) M. Bell and M. C. Pike. Remark on algorithm 178. Comm. ACM,

9:685—686, September 1966.

[CDO01] A. Carlisle and G. Dozier. An off-the-shelf PSO. In Proceedings of
the Workshop on Particle Swarm Optimization, Indianapolis, IN,
2001.

[CKO02] Maurice Clerc and James Kennedy. The particle swarm — ex-
plosion, stability, and convergence in a multidimensional complex
space. IEEE Transactions on Evolutionary Computation, 6(1):58—
73, February 2002.

[Cla90] F. H. Clarke. Optimization and nonsmooth analysis. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1990.

[CLWT01] Drury B. Crawley, Linda K. Lawrie, Frederick C. Winkelmann,
W.F. Buhl, Y. Joe Huang, Curtis O. Pedersen, Richard K. Strand,
Richard J. Liesen, Daniel E. Fisher, Michael J. Witte, and Jason
Glazer. Energyplus: creating a new-generation building energy
simulation program. Energy and Buildings, 33(4):443-457, 2001.

[CP00] I. D. Coope and C. J. Price. Positive bases in numerical optimiza-
tion. Technical Report UCDMS2000/12, Dept. of Mathematics
and Statistics, Univ. of Canterbury, Christchurch, New Zealand,
2000.

[Davb4] Chandler Davis. Theory of positive linear dependence. American
Journal of Mathematics, 76(4):733-746, October 1954.

[DV68] R. De Vogelaere. Remark on algorithm 178. Comm. ACM, 11:498,
July 1968.

[EK95] R. C. Eberhart and J. Kennedy. A new optimizer using particle
swarm theory. In Sizth International Symposium on Micro Ma-
chine and Human Science, pages 39-43, Nagoya, Japan, October
1995. IEEE.

[ESO01] R. C. Eberhart and Y. Shi. Particle swarm optimization: Devel-
opments, applications and resources. In Proceedings of the 2001
Congress on FEvolutionary Computation, volume 1, pages 84-86,
Seoul, South Korea, 2001. IEEE.

[HJ61] R. Hooke and T. A. Jeeves. 'Direct search’ solution of numerical
and statistical problems. J. Assoc. Comp. Mach., 8(2):212-229,
1961.
Copyright (c) 1998-2003 110

The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

GenOpt

Generic Optimization Program
Version 2.0.0 ¢

Lawrence Berkeley National Laboratory

Building Technologies Department
Simulation Research Group

[KDB76]

[KE95)

[KE97]

[KESO01]

[KMO2]

[LPV02a]

[LPVO02b)

[LRWW9S]

[McK98]

[NMG65]
[O'NT1]

[PFTV93)

[Pol97]

S. A. Klein, J. A. Duffie, and W. A. Beckman. TRNSYS — A
transient simulation program. ASHRAFE Transactions, 82, 1976.

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In
IEEE International Conference on Neural Networks, volume IV,
pages 1942-1948, Perth, Australia, November 1995.

J. Kennedy and R. C. Eberhart. A discrete binary version of the
particle swarm algorithm. In Proc. of Systems, Man, and Cyber-
netics, volume 5, pages 4104-4108. IEEE, October 1997.

James Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm In-
telligence. Morgan Kaufmann Publishers, 2001.

J. Kennedy and R. Mendes. Population structure and particle
swarm performance. In David B. Fogel, Mohamed A. El-Sharkawi,
Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark
Shackleton, editors, Proceedings of the 2002 Congress on FEvolu-
tionary Computation CEC2002, pages 1671-1676. IEEE, 2002.

E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis. Particle
swarm optimization for integer programming. In Proceedings of
the 2002 Congress on Evolutionary Computation, volume 2, pages
1582-1587, Honolulu, HI, May 2002. IEEE.

E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis. Parti-
cle swarm optimization for minimax problems. In Proceedings of

the 2002 Congress on Evolutionary Computation, volume 2, pages
1576-1581, Honolulu, HI, May 2002. IEEE.

Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and
Paul E. Wright. Convergence properties of the Nelder-Mead sim-
plex method in low dimensions. SIAM Journal on Optimization,
9(1):112-147, 1998.

K. I. M. McKinnon. Convergence of the Nelder-Mead simplex
method to a nonstationary point. SIAM Journal on Optimization,
9(1):148-158, 1998.

J. A. Nelder and R. Mead. A simplex method for function mini-
mization. The computer journal, 7(4):308-313, January 1965.

R. O’Neill. Algorithm AS 47 — Function minimization using a
simplex procedure. Appl. Stat. 20, 20:338-345, 1971.

W. H. Press, B. P. Flannery, S. A. Tuekolsky, and W. T. Vetter-
ling. Numerical Recipes in C: The Art of Scientific Computing,
chapter 20. Cambridge University Press, 1993.

Elijah Polak. Optimization, Algorithms and Consistent Approzi-
mations, volume 124 of Applied Mathematical Sciences. Springer
Verlag, 1997.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

111

GenOpt

Generic Optimization Program
Version 2.0.0 8

Lawrence Berkeley National Laboratory

Building Technologies Department
Simulation Research Group

[PV02a]

[PV02b)

[PW03]

[SE9S]

[SE99]

[Smi69]
[Tor97]

[vdBEO1]

[Wal75]

[WBB+93]

[Wil64]
[WP03]

[Wri96]

K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimiza-
tion method for constrained optimization problems. In P. Sin-
cak, J. Vascak, V. Kvasnicka, and J. Pospichal, editors, Intelligent
Technologies — Theory and Applications: New Trends in Intelligent
Technologies, volume 76 of Frontiers in Artificial Intelligence and
Applications, pages 214-220. 10S Press, 2002. ISBN: 1-58603-256-
9.

K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global
optimization problems through Particle Swarm Optimization. Nat-
ural Computing, 1:235-306, 2002.

Elijah Polak and Michael Wetter. Generalized pattern search al-
gorithms with adaptive precision function evaluations. Techni-
cal Report LBNL-52629, Lawrence Berkeley National Laboratory,
Berkeley, CA, 2003.

Y. Shi and R. C. Eberhart. A modified particle swarm optimizer.
In FEvolutionary Computation, IEEE World Congress on Computa-
tional Intelligence, pages 6973, Anchorage, AK, May 1998. IEEE.

Y. Shi and R. C. Eberhart. Empirical study of particle swarm
optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation, volume 3, pages 1945-1950, Carmel, IN, 1999. IEEE.

Lyle B. Smith. Remark on algorithm 178. Comm. ACM, 12:638,
November 1969.

Virginia Torczon. On the convergence of pattern search algorithms.
SIAM Journal on Optimization, 7(1):1-25, 1997.

F. van den Bergh and A.P Engelbrecht. Effects of swarm size on
cooperative particle swarm optimisers. In GECCO, San Francisco,
CA, July 2001.

G. R. Walsh. Methods of optimization. Wiley-Interscience [John
Wiley & Sons|, London, 1975.

F.C. Winkelmann, B. E. Birsdall, W. F. Buhl, K. L. Ellington,
A. E. Erdem, J. J. Hirsch, and S. Gates. DOE-2 Supplement,
Version 2.1E. Lawrence Berkeley National Laboratory, Berkeley,
CA, USA, November 1993.

D. J. Wilde. Optimum seeking methods. Prentice-Hall, USA, 1964.

Michael Wetter and Elijah Polak. A convergent optimization
method using pattern search algorithms with adaptive precision
simulation. In To appear: Proc. of the 8-th IBPSA Conference,
Eindhoven, NL, August 2003.

M. H. Wright. Direct search methods: once scorned, now re-
spectable. In D. F. Griffiths and G. A. Watson, editors, Numerical
Analysis 1995, pages 191-208. Addison Wesley Longman (Harlow),
1996.

Copyright (c) 1998-2003
The Regents of the University of California (through Lawrence Berkeley National Laboratory),
subject to receipt of any required approvals from U.S. Department of Energy.

112

